Muralee Murugesu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4848529/publications.pdf

Version: 2024-02-01

28274 29157 12,091 177 55 104 citations h-index g-index papers 197 197 197 6090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toward Opto-Structural Correlation to Investigate Luminescence Thermometry in an Organometallic Eu(II) Complex. Journal of the American Chemical Society, 2022, 144, 912-921.	13.7	29
2	Late Lanthanide Macrocyclic Tetra-NHC Complexes. Inorganic Chemistry, 2022, 61, 1611-1619.	4.0	4
3	Luminescence thermometry using sprayed films of metal complexes. Journal of Materials Chemistry C, 2022, 10, 1767-1775.	5.5	10
4	Extreme $\langle b \rangle g \langle b \rangle$ -Tensor Anisotropy and Its Insensitivity to Structural Distortions in a Family of Linear Two-Coordinate Ni(I) Bis-N-heterocyclic Carbene Complexes. Inorganic Chemistry, 2022, 61, 1308-1315.	4.0	8
5	Controlling the Energyâ€Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
6	Phonon-assisted molecular upconversion in a holmium(<scp>iii</scp>)-based molecular cluster-aggregate. Nanoscale, 2022, 14, 9675-9680.	5.6	12
7	A zero-field single-molecule magnet with luminescence thermometry capabilities containing soft donors. Journal of Materials Chemistry C, 2022, 10, 13946-13953.	5.5	14
8	Enhancing Magnetic Communication between Metal Centres: The Role of <i>s</i> a€¶etrazine Based Radicals as Ligands. Chemistry - A European Journal, 2021, 27, 5091-5106.	3.3	16
9	Lanthanideâ€Based Molecular Clusterâ€Aggregates: Optical Barcoding and Whiteâ€Light Emission with Nanosized {Ln ₂₀ } Compounds. Angewandte Chemie - International Edition, 2021, 60, 6130-6136.	13.8	48
10	Anion-Dependent Catalytic C–C Bond Cleavage of a Lignin Model within a Cationic Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 688-695.	8.0	9
11	Lanthanideâ€Based Molecular Clusterâ€Aggregates: Optical Barcoding and Whiteâ€Light Emission with Nanosized {Ln ₂₀ } Compounds. Angewandte Chemie, 2021, 133, 6195-6201.	2.0	9
12	Asymmetric Ring Opening in a Tetrazineâ€Based Ligand Affords a Tetranuclear Optoâ€Magnetic Ytterbium Complex. Chemistry - A European Journal, 2021, 27, 2361-2370.	3.3	6
13	Multifunktionale Einzelmolek $ ilde{A}\frac{1}{4}$ lmagnete auf Lanthanoidbasis in neuem Licht. Angewandte Chemie, 2021, 133, 1752-1772.	2.0	18
14	Shining New Light on Multifunctional Lanthanide Singleâ€Molecule Magnets. Angewandte Chemie - International Edition, 2021, 60, 1728-1746.	13.8	183
15	Dual magnetic field and temperature optical probes of controlled crystalline phases in lanthanide-doped multi-shell nanoparticles. Nanoscale, 2021, 13, 14723-14733.	5.6	12
16	Probing optical and magnetic properties <i>via</i> subtle stereoelectronic effects in mononuclear Dy ^{III} -complexes. Chemical Communications, 2021, 57, 7818-7821.	4.1	15
17	Frontispiece: Enhancing Magnetic Communication between Metal Centres: The Role of <i>s</i> à€¶etrazine Based Radicals as Ligands. Chemistry - A European Journal, 2021, 27, .	3.3	0
18	Room-Temperature Upconversion in a Nanosized {Ln ₁₅ } Molecular Cluster-Aggregate. ACS Nano, 2021, 15, 5580-5585.	14.6	28

#	Article	IF	CITATIONS
19	Radicalâ€Bridged Ln ₄ Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angewandte Chemie - International Edition, 2021, 60, 24206-24213.	13.8	45
20	Inside-Out/Outside-In Tunability in Nanosized Lanthanide-Based Molecular Cluster-Aggregates: Modulating the Luminescence Thermometry Performance via Composition Control. ACS Applied Materials & Diterfaces, 2021, 13, 47052-47060.	8.0	21
21	Titelbild: Radicalâ€Bridged Ln ₄ Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field (Angew. Chem. 45/2021). Angewandte Chemie, 2021, 133, 24117-24117.	2.0	O
22	Modern trends in "Green―primary energetic materials. New Journal of Chemistry, 2021, 45, 10150-10159.	2.8	34
23	Actinide arene-metalates: ion pairing effects on the electronic structure of unsupported uranium–arenide sandwich complexes. Chemical Science, 2021, 12, 13360-13372.	7.4	13
24	Aufbau <i>>vs.</i> non-Aufbau ground states in two-coordinate d ⁷ single-molecule magnets. Inorganic Chemistry Frontiers, 2021, 8, 5076-5085.	6.0	11
25	Stark Sublevel-Based Thermometry with Tb(III) and Dy(III) Complexes Cosensitized via the 2-Amidinopyridine Ligand. Inorganic Chemistry, 2020, 59, 11061-11070.	4.0	29
26	Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry. Chemistry of Materials, 2020, 32, 7458-7468.	6.7	54
27	Higher performing and less sensitive CN7â°'-based high-energy-density material. Science China Materials, 2020, 63, 1779-1787.	6.3	8
28	A Barrelâ€Shaped Metal–Organic Blueâ€Box Analogue with Photoâ€∤Redoxâ€Switchable Behavior. Chemistry - A European Journal, 2020, 26, 16455-16462.	3.3	8
29	Relaxation dynamics in see-saw shaped Dy(iii) single-molecule magnets. Inorganic Chemistry Frontiers, 2020, 7, 4805-4812.	6.0	13
30	A chelate like no other: exploring the synthesis, coordination chemistry and applications of imidoyl amidine frameworks. Materials Advances, 2020, 1, 2688-2706.	5.4	3
31	NIR-to-NIR emission on a water-soluble {Er6} and {Er3Yb3} nanosized molecular wheel. Nanoscale, 2020, 12, 11435-11439.	5.6	16
32	Two heads are better than one: improving magnetic relaxation in the dysprosium metallocene upon dimerization by use of an exceptionally weakly-coordinating anion. Chemical Communications, 2020, 56, 5937-5940.	4.1	26
33	Stable Actinide Ï€ Complexes of a Neutral 1,4â€Diborabenzene. Angewandte Chemie - International Edition, 2020, 59, 13109-13115.	13.8	15
34	Unprecedented intramolecular pancake bonding in a {Dy ₂ } single-molecule magnet. Inorganic Chemistry Frontiers, 2020, 7, 2592-2601.	6.0	18
35	Incorporation of a nitrogen-rich energetic ligand in a {YbIII2} complex exhibiting slow relaxation of the magnetisation under an applied field. Dalton Transactions, 2020, 49, 10344-10348.	3.3	6
36	Design Strategy for the Controlled Generation of Cationic Frameworks and Ensuing Anion-Exchange Capabilities. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3181-3188.	8.0	11

#	Article	IF	CITATIONS
37	Tripletâ€State Position and Crystalâ€Field Tuning in Optoâ€Magnetic Lanthanide Complexes: Two Sides of the Same Coin. Chemistry - A European Journal, 2019, 25, 14625-14637.	3.3	32
38	Rational Design of Tetranuclear Complexes Employing N â€lmidoylamidine Based Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 963-972.	2.0	3
39	Exploring the dual functionality of an ytterbium complex for luminescence thermometry and slow magnetic relaxation. Chemical Science, 2019, 10, 6799-6808.	7.4	83
40	Magnetic Axiality: Design Principles from Molecules to Materials. Trends in Chemistry, 2019, 1, 425-439.	8.5	88
41	A Luminescent Thermometer Exhibiting Slow Relaxation of the Magnetization: Toward Self-Monitored Building Blocks for Next-Generation Optomagnetic Devices. ACS Central Science, 2019, 5, 1187-1198.	11.3	113
42	Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics, 2019, 6, 436-445.	6.6	14
43	Probing Optical Anisotropy and Polymorphâ€Dependent Photoluminescence in [Ln ₂] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry - A European Journal, 2018, 24, 10146-10155.	3.3	11
44	Reversible Redox, Spin Crossover, and Superexchange Coupling in 3 <i>d</i> Transitionâ€Metal Complexes of <i>Bis</i> â€azinyl Analogues of 2,2′:6′,2′â€Terpyridine. European Journal of Inorganic Chemistry, 2 2018, 1212-1223.	1 018 ,	8
45	A nitrogen-rich ligand as a scaffold for slow magnetic relaxation in dysprosium-based 0D and 1D architectures. Dalton Transactions, 2018, 47, 11782-11787.	3.3	6
46	Probing Magneticâ€Exchange Coupling in Supramolecular Squares Based on Reducible Tetrazineâ€Derived Ligands. Chemistry - A European Journal, 2018, 24, 4259-4263.	3.3	19
47	2,3,5,6-Tetra($1 < i > H < / i > -tetrazol-5-yl$)pyrazine: A Thermally Stable Nitrogen-Rich Energetic Material. ACS Applied Energy Materials, 2018, 1, 589-593.	5.1	41
48	Ferromagnetically coupled dinuclear MII complexes based on a boratriazine ligand framework. Dalton Transactions, 2018, 47, 14875-14879.	3.3	2
49	A tunable lanthanide cubane platform incorporating air-stable radical ligands for enhanced magnetic communication. Communications Chemistry, 2018, 1 , .	4.5	20
50	Synthesis and Investigation of 2,3,5,6â€Tetraâ€(1 <i>H</i> â€tetrazolâ€5â€yl)pyrazine Based Energetic Materials. ChemPlusChem, 2018, 83, 984-990.	2.8	8
51	Tetrazine-Based Ligand Transformation Driving Metal–Metal Bond and Mixed-Valence Hg ^{< sup> Hg^{I< sup>. ACS Omega, 2018, 3, 10273-10277.}}	3.5	3
52	One pot synthesis and systematic study of the photophysical and magnetic properties and thermal sensing of \hat{l}_{\pm} and \hat{l}_{-} phase NaLnF ₄ and \hat{l}_{-} phase core@shell nanoparticles. New Journal of Chemistry, 2018, 42, 13393-13405.	2.8	29
53	[Ln $<$ sub $>$ 16 $<$ /sub $>$] complexes (Ln = Gd $<$ sup $>$ III $<$ /sup $>$, Dy $<$ sup $>$ III $<$ /sup $>$): molecular analogues of natural minerals such as hydrotalcite. Dalton Transactions, 2018, 47, 12847-12851.	3.3	10
54	Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy ^{III} Single-Molecule Magnets. Journal of the American Chemical Society, 2017, 139, 1420-1423.	13.7	186

#	Article	IF	CITATIONS
55	Single-molecule magnet behaviour in a tetranuclear Dy ^{III} complex formed from a novel tetrazine-centered hydrazone Schiff base ligand. Dalton Transactions, 2017, 46, 2471-2478.	3.3	47
56	Stepwise crystallographic visualization of dynamic guest binding in a nanoporous framework. Chemical Science, 2017, 8, 3171-3177.	7.4	66
57	Confinement effects of a crystalline sponge on ferrocene and ferrocene carboxaldehyde. Chemical Communications, 2017, 53, 5645-5648.	4.1	24
58	Single-molecule magnetism arising from cobalt(<scp>ii</scp>) nodes of a crystalline sponge. Journal of Materials Chemistry C, 2017, 5, 835-841.	5 . 5	64
59	Exploring the Promotion of Synthons of Choice: Halogen Bonding in Molecular Lanthanide Complexes Characterized via Xâ€ray Diffraction, Luminescence Spectroscopy, and Magnetic Measurements. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1948-1955.	1.2	6
60	From a Piano Stool to a Sandwich: A Stepwise Route for Improving the Slow Magnetic Relaxation Properties of Thulium. Organometallics, 2017, 36, 4515-4518.	2.3	28
61	Unprecedented Octanuclear Dy ^{III} Cluster Exhibiting Single-Molecule Magnet Behavior. Crystal Growth and Design, 2017, 17, 5044-5048.	3.0	17
62	Strong ferromagnetic exchange coupling in a {Nill4} cluster mediated through an air-stable tetrazine-based radical anion. Chemical Communications, 2017, 53, 8660-8663.	4.1	40
63	Cycloheptatrienyl trianion: an elusive bridge in the search of exchange coupled dinuclear organolanthanide single-molecule magnets. Chemical Science, 2017, 8, 231-240.	7.4	56
64	[U(bipy) ₄]: A Mistaken Case of U ⁰ ?. Chemistry - A European Journal, 2016, 22, 1931-1936.	3.3	25
65	Hidden Transformations of a Crystalline Sponge: Elucidating the Stability of a Highly Porous Three-Dimensional Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4043-4050.	3.0	20
66	An Organolanthanide Building Block Approach to Single-Molecule Magnets. Accounts of Chemical Research, 2016, 49, 1158-1167.	15.6	129
67	Halide Influence on Molecular and Supramolecular Arrangements of Iron Complexes with a 3,5-Bis(2-Pyridyl)-1,2,4,6-Thiatriazine Ligand. Inorganic Chemistry, 2016, 55, 5375-5383.	4.0	13
68	Impact of the coordination environment on the magnetic properties of single-molecule magnets based on homo- and hetero-dinuclear terbium(<scp>iii</scp>) heteroleptic tris(crownphthalocyaninate). Dalton Transactions, 2016, 45, 9320-9327.	3.3	24
69	A propeller-shaped $\hat{l}\frac{1}{4}$ (sub) 4 <td>3.3</td> <td>24</td>	3.3	24
70	From discrete molecule, to polymer, to MOF: mapping the coordination chemistry of Cd ^{II} using ¹¹³ Cd solid-state NMR. Chemical Communications, 2016, 52, 10680-10683.	4.1	18
71	Enchaining EDTA-chelated lanthanide molecular magnets into ordered 1D networks. RSC Advances, 2016, 6, 72510-72518.	3.6	12
72	Terminal solvent effects on the anisotropy barriers of Dy ₂ systems. Dalton Transactions, 2016, 45, 16709-16715.	3.3	41

#	Article	IF	Citations
73	Not Just Lewis Acids: Preface for the Forum on New Trends and Applications for Lanthanides. Inorganic Chemistry, 2016, 55, 9951-9953.	4.0	12
74	Effect of the Mn Oxidation State on Single-Molecule-Magnet Properties: Mn ^{III} vs Mn ^{IV} in Biologically Inspired DyMn ₃ O ₄ Cubanes. Inorganic Chemistry, 2016, 55, 6095-6099.	4.0	19
75	Supramolecular Assembly of Molecular Rare-Earth–3,5-Dichlorobenzoic Acid–2,2′:6′,2″-Terpyridine Materials: Structural Systematics, Luminescence Properties, and Magnetic Behavior. Inorganic Chemistry, 2016, 55, 6902-6915.	4.0	53
76	Probing the structural and magnetic properties of a new family of centrosymmetric dinuclear lanthanide complexes. RSC Advances, 2016, 6, 56668-56673.	3.6	9
77	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	3.3	15
78	Study of a novel hepta-coordinated FeIII bimetallic complex with an unusual 1,2,4,5-tetrazine-ring opening. Polyhedron, 2016, 108, 163-168.	2.2	13
79	Mononuclear, Dinuclear, and Trinuclear Iron Complexes Featuring a New Monoanionic SNS Thiolate Ligand. Inorganic Chemistry, 2016, 55, 987-997.	4.0	23
80	The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules?. Chemical Science, 2016, 7, 2470-2491.	7.4	502
81	Connecting mononuclear dysprosium single-molecule magnets to form dinuclear complexes via in situ ligand oxidation. Chemical Communications, 2016, 52, 677-680.	4.1	25
82	Elucidating the elusive crystal structure of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine. CrystEngComm, 2015, 17, 2190-2195.	2.6	21
83	Tetraanionic Biphenyl Lanthanide Complexes as Single-Molecule Magnets. Inorganic Chemistry, 2015, 54, 2374-2382.	4.0	49
84	Exposing the intermolecular nature of the second relaxation pathway in a mononuclear cobalt(<scp>ii</scp>) single-molecule magnet with positive anisotropy. Dalton Transactions, 2015, 44, 6368-6373.	3.3	108
85	Unprecedented Trinuclear Ag ^I Complex with 2,4,6â€Tris(2â€pyrimidyl)â€1,3,5â€triazine as an Efficient Catalyst for the Aziridination of Olefins. Chemistry - A European Journal, 2015, 21, 6144-6149.	3.3	47
86	Slow Magnetic Relaxation Observed in Dysprosium Compounds Containing Unsupported Near-Linear Hydroxo- and Fluoro-Bridges. Inorganic Chemistry, 2015, 54, 6195-6202.	4.0	47
87	Interaction of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT) with CoX ₂ (X = Cl, Br) in water: trapping of new self-assembled water–chloride/bromide clusters in a [Co(bpca) ₂] ⁺ host (bpca = bis(2-pyrimidylcarbonyl)amidate anion). New Journal of Chemistry, 2015, 39, 7147-7152.	2.8	23
88	Inducing magnetic communication in caged dinuclear Co(<scp>ii</scp>) systems. Dalton Transactions, 2015, 44, 8649-8659.	3.3	15
89	Anion-induced Ag ^I self-assemblies with electron deficient aromatic ligands: anion–Ĩ€-system interactions as a driving force for templated coordination networks. Chemical Communications, 2015, 51, 9547-9550.	4.1	48
90	Ambivalent binding between a radical-based pincer ligand and iron. Dalton Transactions, 2015, 44, 10516-10523.	3.3	15

#	Article	IF	CITATIONS
91	Slow Magnetic Relaxation in Uranium(III) and Neodymium(III) Cyclooctatetraenyl Complexes. Organometallics, 2015, 34, 1415-1418.	2.3	76
92	Adhering magnetic molecules to surfaces. Journal of Materials Chemistry C, 2015, 3, 11986-11998.	5.5	59
93	The renaissance of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT) coordination chemistry. Dalton Transactions, 2015, 44, 20287-20294.	3.3	35
94	Observation of unusual slow-relaxation of the magnetisation in a Gd-EDTA chelate. Dalton Transactions, 2015, 44, 20321-20325.	3.3	62
95	Hybrid Material Constructed from Hg(NCS) ₂ and 2,4,6â€Tris(2â€pyrimidyl)â€1,3,5â€triazine (TPymT Coordination of TPymT in a 2,2′â€Bipyridineâ€Like Mode. European Journal of Inorganic Chemistry, 2015, 2015, 441-446.	7): 2.0	25
96	Chromium–Chromium Interaction in a Binuclear Mixed-Valent Cr ^I –Cr ^{II} Complex. Inorganic Chemistry, 2014, 53, 11492-11497.	4.0	4
97	High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide. Journal of Chemical Physics, 2014, 141, 234506.	3.0	9
98	Recent developments in the field of energetic ionic liquids. Journal of Materials Chemistry A, 2014, 2, 8153-8173.	10.3	110
99	Fineâ€ŧuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single″on Magnet. Angewandte Chemie - International Edition, 2014, 53, 4413-4417.	13.8	370
100	Coupling Strategies to Enhance Single-Molecule Magnet Properties of Erbium–Cyclooctatetraenyl Complexes. Journal of the American Chemical Society, 2014, 136, 8003-8010.	13.7	278
101	Dense nitrogen-rich energetic materials: A study of $5,5\hat{a}\in^2$ -bis(1 <i>H</i> -tetrazolyl)amine. Journal of Chemical Physics, 2014, 140, 184701.	3.0	9
102	Isolation of a Hexanuclear Chromium Cluster with a Tetrahedral Hydridic Core and Its Catalytic Behavior for Ethylene Oligomerization. Inorganic Chemistry, 2014, 53, 6073-6081.	4.0	15
103	Structural Rearrangement Through Lanthanide Contraction in Dinuclear Complexes. Inorganic Chemistry, 2014, 53, 2102-2112.	4.0	69
104	Structural Tuning of Energetic Material Bis(1H-tetrazol-5-yl)amine Monohydrate under Pressures Probed by Vibrational Spectroscopy and X-ray Diffraction. Journal of Physical Chemistry C, 2014, 118, 26504-26512.	3.1	5
105	Renaissance of the coordination chemistry of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT). Part II: new insights into the reaction of TPymT with Pb(NO ₃) ₂ . CrystEngComm, 2014, 16, 3466-3469.	2.6	26
106	A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium(<scp>iii</scp>) ion. Chemical Communications, 2014, 50, 1602-1604.	4.1	134
107	Structural and magnetic conformation of a cerocene [Ce(COT′′) ₂] ^{â^³} exhibiting a uniconfigurational f ¹ ground state and slow-magnetic relaxation. Dalton Transactions, 2014, 43, 2737-2740.	3.3	57
108	Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single-Molecule Magnets Through Electron-Withdrawing Effects. Journal of the American Chemical Society, 2013, 135, 13242-13245.	13.7	265

#	Article	IF	CITATIONS
109	Stable water-soluble iron oxide nanoparticles using Tiron. Materials Chemistry and Physics, 2013, 138, 29-37.	4.0	32
110	Hybrid Nanomaterials: Anchoring Magnetic Molecules on Naked Gold Nanocrystals. Inorganic Chemistry, 2013, 52, 14411-14418.	4.0	25
111	Influence of the Ligand Field on Slow Magnetization Relaxation versus Spin Crossover in Mononuclear Cobalt Complexes. Angewandte Chemie - International Edition, 2013, 52, 11290-11293.	13.8	192
112	Synthesis, Electronic Structure, and Magnetism of [Ni(6-Mes) ₂] ⁺ : A Two-Coordinate Nickel(I) Complex Stabilized by Bulky N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2013, 135, 13640-13643.	13.7	242
113	A Dinuclear Cobalt Complex Featuring Unprecedented Anodic and Cathodic Redox Switches for Single-Molecule Magnet Activity. Journal of the American Chemical Society, 2013, 135, 14670-14678.	13.7	121
114	Synthesis, Structure, and Spectroscopic and Magnetic Characterization of [Mn ₁₂ O ₁₂ (O ₂ CCH ₂ Bu ^t) ₁₆ (MeO) a Mn ₁₂ Single-Molecule Magnet with True Axial Symmetry. Inorganic Chemistry, 2013, 52, 258-272.	1) _{4 4.0}]Â∙Me
115	An Organometallic Building Block Approach To Produce a Multidecker 4 <i>f</i> Single-Molecule Magnet. Journal of the American Chemical Society, 2013, 135, 3502-3510.	13.7	189
116	Turning on Single-Molecule Magnet Behavior in a Linear {Mn3} Compound. Inorganic Chemistry, 2013, 52, 1296-1303.	4.0	15
117	Lessons learned from dinuclear lanthanide nano-magnets. Chemical Society Reviews, 2013, 42, 3278.	38.1	426
118	Nonanuclear lanthanide(III) nanoclusters: Structure, luminescence and magnetic properties. Polyhedron, 2013, 53, 187-192.	2.2	19
119	High-Temperature Spin Crossover Behavior in a Nitrogen-Rich Fe ^{III} -Based System. Inorganic Chemistry, 2013, 52, 1825-1831.	4.0	30
120	Novel Co-based metal–organic frameworks and their magnetic properties using asymmetrically binding 4-(4′-carboxyphenyl)-1,2,4-triazole. Dalton Transactions, 2013, 42, 7795.	3.3	34
121	Renaissance of the coordination chemistry of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT). Part I: First crystal structure of a TPymT complex with a d-metal cation. CrystEngComm, 2013, 15, 10419.	2.6	32
122	A novel high-spin tridecanuclear Ni ^{II} cluster with an azido-bridged core exhibiting disk-like topology. Chemical Communications, 2012, 48, 1287-1289.	4.1	26
123	Ytterbium can relax slowly too: a field-induced Yb2 single-molecule magnet. Dalton Transactions, 2012, 41, 12349.	3.3	73
124	Lanthanide Complexes of Tritopic Bis(hydrazone) Ligands: Single-Molecule Magnet Behavior in a Linear Dy ^{III} ₃ Complex. Inorganic Chemistry, 2012, 51, 1028-1034.	4.0	69
125	Iron Complex-Catalyzed Ammonia–Borane Dehydrogenation. A Potential Route toward B–N-Containing Polymer Motifs Using Earth-Abundant Metal Catalysts. Journal of the American Chemical Society, 2012, 134, 5598-5609.	13.7	195
126	Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition. Journal of Physical Chemistry Letters, 2012, 3, 3721-3733.	4.6	19

#	Article	IF	CITATIONS
127	Isolation and Characterization of a Class II Mixed-Valence Chromium(I)/(II) Self-Activating Ethylene Trimerization Catalyst. Organometallics, 2012, 31, 486-494.	2.3	25
128	The orientation is in the details. Nature Chemistry, 2012, 4, 347-348.	13.6	39
129	Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chemical Science, 2012, 3, 2158.	7.4	155
130	Novel in situ manganese-promoted double-aldol addition. Inorganica Chimica Acta, 2012, 380, 378-385.	2.4	23
131	An unsymmetrical coordination environment leading to two slow relaxation modes in a Dy2 single-molecule magnet. Chemical Communications, 2011, 47, 10993.	4.1	154
132	Gradual spin crossover behaviour in a linear trinuclear FeII complex. CrystEngComm, 2011, 13, 5190.	2.6	37
133	Preparation and Characterization of a Reduced Chromium Complex via Vinyl Oxidative Coupling: Formation of a Self-Activating Catalyst for Selective Ethylene Trimerization. Journal of the American Chemical Society, 2011, 133, 6380-6387.	13.7	43
134	The Use of Magnetic Dilution To Elucidate the Slow Magnetic Relaxation Effects of a Dy ₂ Single-Molecule Magnet. Journal of the American Chemical Society, 2011, 133, 8830-8833.	13.7	334
135	Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium(III) Complex. Journal of the American Chemical Society, 2011, 133, 5319-5328.	13.7	541
136	An Organometallic Sandwich Lanthanide Single-Ion Magnet with an Unusual Multiple Relaxation Mechanism. Journal of the American Chemical Society, 2011, 133, 19286-19289.	13.7	257
137	Planar Tetranuclear Dy(III) Single-Molecule Magnet and Its Sm(III), Gd(III), and Tb(III) Analogues Encapsulated by Salen-Type and β-Diketonate Ligands. Inorganic Chemistry, 2011, 50, 7059-7065.	4.0	143
138	Single-Molecule Magnet Behavior with a Single Metal Center Enhanced through Peripheral Ligand Modifications. Journal of the American Chemical Society, 2011, 133, 15814-15817.	13.7	319
139	Importance of Out-of-State Spin–Orbit Coupling for Slow Magnetic Relaxation in Mononuclear Fe ^{II} Complexes. Journal of the American Chemical Society, 2011, 133, 15806-15809.	13.7	202
140	Polyalcohol ligand in Cull and FellI cluster chemistry: Synthesis, structures and magnetic properties of {Cu12} and {Fe8} aggregates. Inorganica Chimica Acta, 2011, 375, 187-192.	2.4	2
141	Lead bipyridyl hexacyanoferrate complex. Russian Journal of Inorganic Chemistry, 2011, 56, 258-261.	1.3	2
142	A Rare μ ₄ â€O Centred Dy ₄ Tetrahedron with Coordinationâ€Induced Local Chirality and Singleâ€Molecule Magnet Behaviour. European Journal of Inorganic Chemistry, 2011, 2011, 1535-1539.	2.0	65
143	Self-assembly of square-lattice copper sheets displaying intra-ferromagnetism. Inorganica Chimica Acta, 2011, 370, 98-101.	2.4	17
144	Fluorescent dialdehyde ligand for the encapsulation of dinuclear luminescent lanthanide complexes. Dalton Transactions, 2010, 39, 5698.	3.3	28

#	Article	IF	CITATIONS
145	Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3740-3745.	7.1	33
146	Two-Dimensional Networks of Lanthanide Cubane-Shaped Dumbbells. Inorganic Chemistry, 2009, 48, 11748-11754.	4.0	67
147	Salen-Based [Zn ₂ Ln ₃] Complexes with Fluorescence and Single-Molecule-Magnet Properties. Inorganic Chemistry, 2009, 48, 8051-8053.	4.0	110
148	Anisotropy barrier reduction in fast-relaxing Mn12 single-molecule magnets. Physical Review B, 2009, 80, .	3.2	21
149	Dinuclear Dysprosium(III) Singleâ€Molecule Magnets with a Large Anisotropic Barrier. Angewandte Chemie - International Edition, 2008, 47, 8848-8851.	13.8	502
150	Large Mn $<$ sub $>25<$ /sub $>$ Single-Molecule Magnet with Spin $<$ i $>S<$ /i $>=$ $<$ sup $>51<$ /sup $><$ i $>/<$ ii $><$ sub $>2<$ /sub $>:$ Magnetic and High-Frequency Electron Paramagnetic Resonance Spectroscopic Characterization of a Giant Spin State. Inorganic Chemistry, 2008, 47, 9459-9470.	4.0	56
151	High-Spin Mn Wheels. Inorganic Chemistry, 2007, 46, 6968-6979.	4.0	52
152	New derivatives of an enneanuclear Mn SMM. Polyhedron, 2007, 26, 1845-1848.	2.2	14
153	A family of mixed-valent tridecanuclear clusters, and their magnetostructural correlation. Polyhedron, 2007, 26, 2129-2134.	2.2	17
154	A family of ferrocene-rich Mn7, Mn8 and Mn13 clusters. Polyhedron, 2007, 26, 2276-2280.	2.2	23
155	55Mn nuclear spin relaxation in the truly axial single-molecule magnet Mn12-t-butylacetate thermally-activated down to 400mK. Polyhedron, 2007, 26, 2320-2324.	2.2	16
156	New Mn12 single-molecule magnets from edge-sharing bioctahedra. Dalton Transactions, 2006, , 2285.	3.3	31
157	Mixed 3d/4d and 3d/4f metal clusters: Tetranuclear and complexes, and the first Fe/4f single-molecule magnets. Polyhedron, 2006, 25, 613-625.	2.2	192
158	Single-molecule magnets: synthesis, structures and magnetic properties of Mn11 and Mn25 clusters. Polyhedron, 2005, 24, 2894-2899.	2.2	26
159	A comparison between high-symmetry Mn12 single-molecule magnets in different ligand/solvent environments. Polyhedron, 2005, 24, 2284-2292.	2.2	34
160	New Structural Motifs in Manganese Single-Molecule Magnetism from the Use of Triethanolamine Ligands. Angewandte Chemie - International Edition, 2005, 44, 892-896.	13.8	148
161	Hierarchical Assembly of {Fe13} Oxygen-Bridged Clusters into a Close-Packed Superstructure. Angewandte Chemie - International Edition, 2005, 44, 6678-6682.	13.8	80
162	Linking Centered Manganese Triangles into Larger Clusters: A {Mn32} Truncated Cube. Angewandte Chemie - International Edition, 2005, 44, 6540-6543.	13.8	107

#	Article	IF	CITATIONS
163	A spectroscopic comparison between several high-symmetry S=10 Mn12 single-molecule magnets. Journal of Applied Physics, 2005, 97, 10M510.	2.5	27
164	Field-sweep-rate dependence of the coercive field of single-molecule magnets: A classical approach with applications to the quantum regime. Physical Review B, 2005, 72, .	3.2	14
165	A Family of Manganese Rods:Â Syntheses, Structures, and Magnetic Properties. Journal of the American Chemical Society, 2004, 126, 15445-15457.	13.7	170
166	Polycopper(II) aggregates as building blocks for supramolecular magnetic structures. Journal of Physics and Chemistry of Solids, 2004, 65, 667-676.	4.0	24
167	New Routes to Polymetallic Clusters: Fluoride-Based Tri-, Deca-, and Hexaicosametallic MnIII Clusters and their Magnetic Properties. Chemistry - A European Journal, 2004, 10, 5180-5194.	3.3	110
168	New hexanuclear and dodecanuclear Fe(III) clusters with carboxylate and alkoxide-based ligands from cluster aggregation reactions. Polyhedron, 2004, 23, 2779-2788.	2.2	54
169	Synthesis, Structure, and Magnetic Properties of a [Mn22] Wheel-like Single-Molecule Magnet. Inorganic Chemistry, 2004, 43, 4203-4209.	4.0	142
170	Structure and Magnetic Properties of a Giant Cu44IIAggregate Which Packs with a Zeotypic Superstructure. Inorganic Chemistry, 2004, 43, 7269-7271.	4.0	87
171	Single-Molecule Magnets:  A Mn25 Complex with a Record S = 51/2 Spin for a Molecular Species. Journal of the American Chemical Society, 2004, 126, 4766-4767.	13.7	428
172	Preparation and properties of new Fe6 and Fe8 clusters of iron(iii) with tripodal ligands. Dalton Transactions, 2003, , 4552.	3.3	55
173	The isotropic and anisotropic interactions of the alternating ferromagnetic quasi-one-dimensional magnet [Cu4(ndpa)2(H2O)6Cl2]Â4H2O. Journal of Physics Condensed Matter, 2003, 15, 4477-4486.	1.8	0
174	Ferromagnetic interactions mediated by syn–anti carboxylate bridging in tetranuclear copper(II) compounds. Inorganica Chimica Acta, 2002, 337, 328-336.	2.4	63
175	Strategies for producing cluster-based magnetic arrays. Polyhedron, 2001, 20, 1687-1697.	2.2	42
176	Radicalâ€Bridged Ln 4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angewandte Chemie, 0, , .	2.0	3
177	Controlling the Energyâ€Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angewandte Chemie, 0, , .	2.0	2