List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4847952/publications.pdf Version: 2024-02-01

KENNETH S RDELLED

#	Article	IF	CITATIONS
1	Gaseous slip flow in long microchannels. Journal of Microelectromechanical Systems, 1997, 6, 167-178.	1.7	603
2	Apparent slip flows in hydrophilic and hydrophobic microchannels. Physics of Fluids, 2003, 15, 2897.	1.6	430
3	Moving Fluid with Bacterial Carpets. Biophysical Journal, 2004, 86, 1863-1870.	0.2	372
4	Mass flow and tangential momentum accommodation in silicon micromachined channels. Journal of Fluid Mechanics, 2001, 437, 29-43.	1.4	277
5	The role of lubricin in the mechanical behavior of synovial fluid. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6194-6199.	3.3	218
6	Aeromechanics of Membrane Wings with Implications for Animal Flight. AIAA Journal, 2008, 46, 2096-2106.	1.5	210
7	Force-free swimming of a model helical flagellum in viscoelastic fluids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19516-19520.	3.3	170
8	Enhanced diffusion due to motile bacteria. Physics of Fluids, 2004, 16, L78-L81.	1.6	164
9	Quantifying the complexity of bat wing kinematics. Journal of Theoretical Biology, 2008, 254, 604-615.	0.8	154
10	A macroscopic scale model of bacterial flagellar bundling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15481-15485.	3.3	153
11	Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method. Journal of Fluids Engineering, Transactions of the ASME, 1996, 118, 464-469.	0.8	139
12	Active control of turbulent boundary layers. Journal of Fluid Mechanics, 2003, 495, 209-233.	1.4	138
13	Direct measurements of the kinematics and dynamics of bat flight. Bioinspiration and Biomimetics, 2006, 1, S10-S18.	1.5	136
14	High-speed microfabricated silicon turbomachinery and fluid film bearings. Journal of Microelectromechanical Systems, 2005, 14, 141-152.	1.7	120
15	Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, <i>Cynopterus brachyotis</i> . Journal of Experimental Biology, 2010, 213, 3427-3440.	0.8	120
16	Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. Journal of Fluid Mechanics, 2006, 566, 447.	1.4	115
17	Near-surface velocimetry using evanescent wave illumination. Experiments in Fluids, 2004, 37, 825-833.	1.1	112
18	The evolution of a localized disturbance in a laminar boundary layer. Part 1. Weak disturbances. Journal of Fluid Mechanics, 1990, 220, 569-594.	1.4	94

#	Article	IF	CITATIONS
19	Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids, 2009, 46, 933-943.	1.1	93
20	Design and characterization of a multi-articulated robotic bat wing. Bioinspiration and Biomimetics, 2013, 8, 016009.	1.5	92
21	Actuation and control of a turbulent channel flow using Lorentz forces. Physics of Fluids, 2004, 16, 897-907.	1.6	90
22	The use of the Karhunen-Loève procedure for the calculation of linear eigenfunctions. Journal of Computational Physics, 1991, 96, 277-296.	1.9	84
23	Minimal model for synchronization induced by hydrodynamic interactions. Physical Review E, 2009, 80, 061919.	0.8	83
24	Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration and Biomimetics, 2012, 7, 036006.	1.5	83
25	Coupled Fluid-Structural Characteristics of Actuators for Flow Control. AIAA Journal, 1997, 35, 832-837.	1.5	82
26	Microfluidic Pump Powered by Selfâ€Organizing Bacteria. Small, 2008, 4, 111-118.	5.2	81
27	Controlled Mixing in Microfluidic Systems Using Bacterial Chemotaxis. Analytical Chemistry, 2007, 79, 955-959.	3.2	80
28	Airflows inside passenger cars and implications for airborne disease transmission. Science Advances, 2021, 7, .	4.7	80
29	System identification and control of a turbulent boundary layer. Physics of Fluids, 1997, 9, 1867-1869.	1.6	79
30	Computer-aided calibration of X-probes using a look-up table. Experiments in Fluids, 2004, 6, 115-118.	1.1	78
31	Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. Physical Review E, 2007, 76, 046307.	0.8	77
32	Helical motion of the cell body enhances <i>Caulobacter crescentus</i> motility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11252-11256.	3.3	75
33	The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production. Journal of Experimental Biology, 2010, 213, 4110-4122.	0.8	73
34	Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling. Experiments in Fluids, 2004, 37, 782-788.	1.1	71
35	Use of Bacterial Carpets to Enhance Mixing in Microfluidic Systems. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 319-324.	0.8	71
36	On the evolution of a wave packet in a laminar boundary layer. Journal of Fluid Mechanics, 1991, 225, 575-606.	1.4	69

#	Article	IF	CITATIONS
37	Changes in kinematics and aerodynamics over a range of speeds in <i>Tadarida brasiliensis</i> , the Brazilian free-tailed bat. Journal of the Royal Society Interface, 2012, 9, 1120-1130.	1.5	68
38	Energy harvesting performance and flow structure of an oscillating hydrofoil with finite span. Journal of Fluids and Structures, 2017, 70, 314-326.	1.5	65
39	A wafer-bonded floating-element shear stress microsensor with optical position sensing by photodiodes. Journal of Microelectromechanical Systems, 1996, 5, 307-315.	1.7	61
40	The motion, stability and breakup of a stretching liquid bridge with a receding contact line. Journal of Fluid Mechanics, 2011, 666, 554-572.	1.4	61
41	Upstroke wing flexion and the inertial cost of bat flight. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2945-2950.	1.2	61
42	Membrane muscle function in the compliant wings of bats. Bioinspiration and Biomimetics, 2014, 9, 025007.	1.5	60
43	The evolution of a localized disturbance in a laminar boundary layer. Part 2. Strong disturbances. Journal of Fluid Mechanics, 1990, 220, 595-621.	1.4	58
44	Shape Transition and Propulsive Force of an Elastic Rod Rotating in a Viscous Fluid. Physical Review Letters, 2008, 100, 078101.	2.9	57
45	Wing Structure and the Aerodynamic Basis of Flight in Bats. , 2007, , .		56
46	Speed of a swimming sheet in Newtonian and viscoelastic fluids. Physical Review E, 2013, 87, 013015.	0.8	56
47	Fluid effects in vibrating micromachined structures. Journal of Microelectromechanical Systems, 2005, 14, 770-781.	1.7	55
48	Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia. PLoS Biology, 2015, 13, e1002297.	2.6	55
49	Transient growth in circular pipe flow. I. Linear disturbances. Physics of Fluids, 1994, 6, 3643-3651.	1.6	54
50	Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations. Journal of Experimental Biology, 2011, 214, 1546-1553.	0.8	54
51	Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (<i>Glaucomys sabrinus</i>). Journal of the Royal Society Interface, 2013, 10, 20120794.	1.5	54
52	Dynamic Calibration of a Shear-Stress Sensor Using Stokes-Layer Excitation. AIAA Journal, 2001, 39, 819-823.	1.5	51
53	Direct measurement of slip length in electrolyte solutions. Physics of Fluids, 2007, 19, 028104.	1.6	51
54	Deep reactive ion etching: a promising technology for micro- and nanosatellites. Smart Materials and Structures, 2001, 10, 1135-1144.	1.8	50

#	Article	IF	CITATIONS
55	Active Control of Tip Clearance Flow in Axial Compressors. Journal of Turbomachinery, 2005, 127, 352-362.	0.9	50
56	Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. Journal of Fluids and Structures, 2015, 55, 262-275.	1.5	48
57	Transient growth in two―and threeâ€dimensional boundary layers. Physics of Fluids, 1994, 6, 1983-1993.	1.6	47
58	On the errors incurred calculating derivatives using Chebyshev polynomials. Journal of Computational Physics, 1992, 99, 56-67.	1.9	46
59	Vortex formation and shedding from a cyber-physical pitching plate. Journal of Fluid Mechanics, 2016, 793, 229-247.	1.4	46
60	Aerodynamic Characterization of a Wing Membrane with Variable Compliance. AIAA Journal, 2014, 52, 1749-1756.	1.5	45
61	The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer. Journal of Fluid Mechanics, 1997, 340, 395-411.	1.4	42
62	Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Experiments in Fluids, 2006, 41, 869-880.	1.1	39
63	Propulsion by a helical flagellum in a capillary tube. Physics of Fluids, 2014, 26, .	1.6	39
64	The control of transient disturbances in a flat plate boundary layer through active wall motion. Physics of Fluids A, Fluid Dynamics, 1989, 1, 574-582.	1.6	38
65	Pseudospectral Orbit Simulation of Nonideal Gas-Lubricated Journal Bearings for Microfabricated Turbomachines. Journal of Tribology, 1999, 121, 604-609.	1.0	37
66	Acoustic receptivity and evolution of two-dimensional and oblique disturbances in a Blasius boundary layer. Journal of Fluid Mechanics, 2001, 432, 69-90.	1.4	37
67	To Slip or Not to Slip: Water Flows in Hydrophilic and Hydrophobic Microchannels. , 2002, , 557.		36
68	The effects of hindered mobility and depletion of particles in near-wall shear flows and the implications for nanovelocimetry. Journal of Fluid Mechanics, 2009, 637, 241-265.	1.4	36
69	Camber and aerodynamic performance of compliant membrane wings. Journal of Fluids and Structures, 2017, 68, 390-402.	1.5	34
70	Oscillatory motions of a prestrained compliant membrane caused by fluid–membrane interaction. Journal of Fluids and Structures, 2010, 26, 339-358.	1.5	33
71	Thrust, drag and wake structure in flapping compliant membrane wings. Journal of Fluid Mechanics, 2019, 862, 871-888.	1.4	33
72	Micron-Scale Droplet Deposition on a Hydrophobic Surface Using a Retreating Syringe. Physical Review Letters, 2009, 102, 164502.	2.9	31

#	Article	IF	CITATIONS
73	How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing. Bioinspiration and Biomimetics, 2014, 9, 025008.	1.5	31
74	The aerodynamic cost of flight in the short-tailed fruit bat (<i>Carollia perspicillata</i>): comparing theory with measurement. Journal of the Royal Society Interface, 2014, 11, 20140147.	1.5	31
75	Heat transfer variation on protuberances and surface roughness elements. Journal of Thermophysics and Heat Transfer, 1995, 9, 175-180.	0.9	29
76	Kinematic Plasticity during Flight in Fruit Bats: Individual Variability in Response to Loading. PLoS ONE, 2012, 7, e36665.	1.1	28
77	Wake structure and kinematics in two insectivorous bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150385.	1.8	28
78	Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking. Experiments in Fluids, 2008, 45, 157-166.	1.1	27
79	Fog Deposition and Accumulation on Smooth and Textured Hydrophobic Surfaces. Langmuir, 2012, 28, 12771-12778.	1.6	27
80	Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1707-1712.	3.3	27
81	Dynamics of a Compliant Membrane as Related to Mammalian Flight. , 2007, , .		26
82	Low-Order Models for Very Short Hybrid Gas Bearings. Journal of Tribology, 2001, 123, 368-375.	1.0	25
83	A bird? A plane? No, it's a bat: an introduction to the biomechanics of bat flight. , 2012, , 317-352.		25
84	An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight. Journal of the Royal Society Interface, 2013, 10, 20120940.	1.5	25
85	Transient growth in circular pipe flow. II. Nonlinear development. Physics of Fluids, 1994, 6, 3652-3664.	1.6	24
86	A scaling for vortex formation on swept and unswept pitching wings. Journal of Fluid Mechanics, 2017, 832, 697-720.	1.4	24
87	A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones. Science Robotics, 2020, 5, .	9.9	23
88	Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility. Physical Review Fluids, 2020, 5, .	1.0	23
89	Universality of probability density functions in turbulent channel flow. Physics of Fluids, 1995, 7, 1122-1129.	1.6	22
90	Colloid Lithography-Induced Polydimethylsiloxane Microstructures and their Application to Cell Patterning. Biotechnology Letters, 2006, 28, 169-173.	1.1	22

#	Article	IF	CITATIONS
91	3D reconstruction of bat flight kinematics from sparse multiple views. , 2011, , .		22
92	Confinement effects on energy harvesting by a heaving and pitching hydrofoil. Journal of Fluids and Structures, 2019, 84, 233-242.	1.5	22
93	Analysis and testing of a silicon intrinsic-point heater in a micropropulsion application. Sensors and Actuators A: Physical, 2001, 91, 249-255.	2.0	21
94	Climbing flight performance and load carrying in lesser dog-faced fruit bats (<i>Cynopterus) Tj ETQq0 0 0 rgBT /0</i>	Overlock 1 0.8	0 Tf 50 622 1 21
95	On Drag Reduction in Turbulent Channel Flow over Superhydrophobic Surfaces. Springer Proceedings in Physics, 2009, , 233-236.	0.1	20
96	Wake-foil interactions and energy harvesting efficiency in tandem oscillating foils. Physical Review Fluids, 2021, 6, .	1.0	19
97	Aeromechanics in aeroecology: flight biology in the aerosphere. Integrative and Comparative Biology, 2007, 48, 85-98.	0.9	18
98	The Aero-Mechanics of Low Aspect Ratio Compliant Membrane Wings, with Applications to Animal Flight. , 2008, , .		18
99	Hindlimb Motion during Steady Flight of the Lesser Dog-Faced Fruit Bat, Cynopterus brachyotis. PLoS ONE, 2014, 9, e98093.	1.1	18
100	Scaling of the performance of insect-inspired passive-pitching flapping wings. Journal of the Royal Society Interface, 2019, 16, 20190609.	1.5	18
101	Resonant response and optimal energy harvesting of an elastically mounted pitching and heaving hydrofoil. Physical Review Fluids, 2019, 4, .	1.0	18
102	Localized disturbances in parallel shear flows. Flow, Turbulence and Combustion, 1994, 53, 51-97.	0.2	17
103	A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Applied Physics Letters, 2016, 109, .	1.5	17
104	The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics. Bioinspiration and Biomimetics, 2019, 14, 016003.	1.5	17
105	Microhydraulic transducer technology for actuation and power generation. , 2000, , .		16
106	Multifidelity Approaches for the Computational Analysis and Design of Effective Flapping Wing Vehicles. , 2008, , .		16
107	Accurate measurement of streamwise vortices using dual-plane PIV. Experiments in Fluids, 2012, 53, 1487-1500.	1.1	16
108	Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings. Journal of Anatomy, 2016, 229, 114-127.	0.9	16

#	Article	IF	CITATIONS
109	Control of Separated Flow Using Actuated Compliant Membrane Wings. AIAA Journal, 2019, 57, 3801-3811.	1.5	16
110	A novel system for measuring liquid flow rates with nanoliter per minute resolution. Experiments in Fluids, 2003, 34, 635-642.	1.1	15
111	Large apparent slip at a moving contact line. Physics of Fluids, 2015, 27, 091703.	1.6	15
112	Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species. Journal of Experimental Biology, 2017, 220, 1820-1829.	0.8	15
113	Nonlinear flow-induced instability of an elastically mounted pitching wing. Journal of Fluid Mechanics, 2020, 899, .	1.4	15
114	Bats actively modulate membrane compliance to control camber and reduce drag. Journal of Experimental Biology, 2022, 225, .	0.8	15
115	INFRARED DIAGNOSTICS FOR MEASURING FLUID AND SOLID MOTION INSIDE SILICON MICRODEVICES. Microscale Thermophysical Engineering, 2004, 8, 169-182.	1.2	14
116	Linear and nonlinear evolution of boundary layer instabilities generated by acousticâ€receptivity mechanisms. Physics of Fluids, 1996, 8, 1415-1423.	1.6	13
117	Aerodynamic Behavior of Compliant Membranes as Related to Bat Flight. , 2008, , .		13
118	Helical swimming in Stokes flow using a novel boundary-element method. Physics of Fluids, 2013, 25, .	1.6	13
119	A Computational Investigation of Bio-Inspired Formation Flight and Ground Effect. , 2007, , .		12
120	Wings as inertial appendages: how bats recover from aerial stumbles. Journal of Experimental Biology, 2019, 222, .	0.8	12
121	Aerosol transmission in passenger car cabins: Effects of ventilation configuration and driving speed. Physics of Fluids, 2022, 34, 021904.	1.6	12
122	Unsteady high-lift mechanisms from heaving flat plate simulations. International Journal of Heat and Fluid Flow, 2017, 67, 230-239.	1.1	11
123	Energetically Optimal Short-Range Gliding Trajectories for Gliding Animals. AIAA Journal, 2011, 49, 2650-2657.	1.5	10
124	The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing. Interface Focus, 2017, 7, 20160083.	1.5	10
125	Manufacturing Effects in Microfabricated Gas Bearings: Axially Varying Clearance. Journal of Tribology, 2002, 124, 815-821.	1.0	9
126	High-speed quantum dot tracking and velocimetry using evanescent wave illumination. Experiments in Fluids, 2009, 47, 1059-1066.	1.1	9

#	Article	IF	CITATIONS
127	Bat-Inspired Flapping Flight. , 2014, , .		9
128	Catch Strip Assay for the Relative Assessment of Two-Dimensional Protein Association Kinetics. Analytical Chemistry, 2008, 80, 944-950.	3.2	8
129	Time-resolved wake structure and kinematics of bat flight. , 2010, , 371-381.		8
130	Oblique transition in a laminar Blasius boundary layer. Journal of Fluid Mechanics, 2002, 453, 177-200.	1.4	7
131	Dynamics of Synthetic Jet Arrays for Closed-Loop Flow Control. , 2003, , .		7
132	Effects of confinement on the dynamics and correlation scales in kinesin-microtubule active fluids. Physical Review E, 2021, 104, 034601.	0.8	7
133	Nonlinear fluid damping of elastically mounted pitching wings in quiescent water. Journal of Fluid Mechanics, 2021, 923, .	1.4	6
134	Guidelines for the design and control of bio-inspired hovering robots. , 2017, , .		5
135	Nonlinear modeling and characterization of ultrasoft silicone elastomers. Applied Physics Letters, 2020, 116, 203702.	1.5	5
136	Linear predictive filtering in a numerically simulated turbulent flow. Physics of Fluids, 2000, 12, 3221-3228.	1.6	4
137	Lorentz Force Control of Turbulent Channel Flow. , 2003, , .		4
138	Performance and scaling of an electro-osmotic mixer. , 0, , .		4
139	Deformation, forces, and flows associated with extremely compliant membrane disks. , 2020, , .		4
140	Challenges for Lubrication in High Speed MEMS. , 2003, , 197-220.		4
141	Wing Fold and Twist Greatly Improves Flight Efficiency for Bat-Scale Flapping Wing Robots. , 2021, , .		4
142	Fluid–structure interactions of energy-harvesting membrane hydrofoils. Journal of Fluid Mechanics, 2022, 942, .	1.4	4
143	Diffusion-Limited Evaporation in Long Microchannels. , 2003, , 673.		3
144	Near-Surface Velocimetry Using Evanescent Wave Illumination. , 2003, , 645.		3

Near-Surface Velocimetry Using Evanescent Wave Illumination. , 2003, , 645. 144

#	Article	IF	CITATIONS
145	Bypass transition in two- and three-dimensional boundary layers. , 1993, , .		2
146	Full-scale aeroelastic simulations of hovering bat flight. , 2020, , .		2
147	Reduced-order modeling of a bat flying with heavy and highly articulated flapping wing. , 2021, , .		2
148	Low-Order Modeling of Flapping Flight with Highly Articulated, Cambered, Heavy Wings. AIAA Journal, 0, , 1-10.	1.5	2
149	In-Flight Wing-Membrane Strain Measurements on Bats. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 437-445.	0.3	2
150	Drag Reduction in Turbulent Flows Using Lorentz Force Actuation. Fluid Mechanics and Its Applications, 2004, , 315-318.	0.1	2
151	Optimization of the recursive least squares algorithm for capacitive strain sensing. Engineering Research Express, 2020, 2, 046001.	0.8	2
152	Linear and nonlinear evolution of boundary layer instabilities generated by acoustic-receptivity mechanisms. , 1996, , .		1
153	Acoustic receptivity of a Blasius boundary layer with 2-D and oblique surface waviness. , 2000, , .		1
154	Statistical Particle Tracking Velocimetry Using Molecular and Quantum Dot Tracer Particles. , 2005, , 235.		1
155	Direct Measurement of Slip Velocities Using Three-Dimensional Total Internal Reflection Velocimetry. , 2005, , 213.		1
156	The Structure and Dynamics of Turbulent Flows Subject to Lorentz Force Control. , 2006, , .		1
157	A Self-Excited Flapping Wing: Lift, Drag and the Implications for Biological Flight. , 2011, , .		1
158	Steady blowing to control the lift and drag on a free shear layer airfoil. , 2019, , .		1
159	Dynamic calibration of a shear-stress sensor using stokes-layer excitation. AIAA Journal, 2001, 39, 819-823.	1.5	1
160	A Selective Mixing in Microfluidic Systems Using Bacterial Chemotaxis. , 2005, , .		1
161	Cavities Improve the Power Factor of Low-Reynolds-Number Airfoils and Wings. AIAA Journal, 0, , 1-12.	1.5	1
162	On the errors incurred calculating derivatives using Chebyshev polynomials. Journal of Computational Physics, 1991, 94, 250-251.	1.9	0

#	Article	IF	CITATIONS
163	CONTROL OF TURBULENT FLOWS USING LORENTZ FORCE ACTUATION. Lecture Notes Series, Institute for Mathematical Sciences, 2005, , 325-356.	0.2	Ο
164	Control of Turbulent Boundary Layers Using FXLMS Feedforward Architectures. , 2006, , .		0
165	Visualization and Tracking of Electrospray Droplet Emissions Using Fluorescence and Holographic Techniques. , 2007, , 1047.		Ο
166	Energetically Optimal Flight Trajectories for Short Range Gliding Animals. , 2009, , .		0
167	Exploration of bat wing morphology through a strip method and visualization. , 2010, , .		Ο
168	Non-Linear Stability Boundaries of an Elastically-Mounted Pitching Wing. , 2020, , .		0
169	Wall Distance Effects on Transition to Turbulence in Low-Reynolds-Number Separated Flows. AIAA Journal, 0, , 1-9.	1.5	Ο
170	Non-localized acoustic receptivity and subsequent disturbance growth in a Blasius boundary layer. , 2000, , 79-84.		0
171	Enhanced Diffusion Due to Swimming Bacteria. , 2003, , .		Ο
172	Effects of Cross-Section Geometry of Capillary on the Evaporation From the Meniscus. , 2005, , .		0
173	Models for Adaptive Feedforward Control of Turbulence. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2008, , 219-227.	0.1	Ο
174	Evanescent Wave Microscopy. , 2013, , 1-11.		0
175	The Subharmonic Growth of a Wave-Packet in a Laminar Boundary Layer. , 1991, , 142-150.		Ο
176	Microrockets. , 2015, , 2139-2140.		0
177	Aeroelastic Instability Boundaries of Pitching Swept Wings. , 2022, , .		0