
Carsten Culmsee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4847598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death. Cell Metabolism, 2008, 8, 237-248.	16.2	1,009
2	Homocysteine Elicits a DNA Damage Response in Neurons That Promotes Apoptosis and Hypersensitivity to Excitotoxicity. Journal of Neuroscience, 2000, 20, 6920-6926.	3.6	711
3	Roles of Nuclear Factor κB in Neuronal Survival and Plasticity. Journal of Neurochemistry, 2000, 74, 443-456.	3.9	423
4	Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. Journal of Gene Medicine, 2004, 6, 1102-1111.	2.8	417
5	A Dual Role for the SDF-1/CXCR4 Chemokine Receptor System in Adult Brain: Isoform-Selective Regulation of SDF-1 Expression Modulates CXCR4-Dependent Neuronal Plasticity and Cerebral Leukocyte Recruitment after Focal Ischemia. Journal of Neuroscience, 2002, 22, 5865-5878.	3.6	366
6	p53 in neuronal apoptosis. Biochemical and Biophysical Research Communications, 2005, 331, 761-777.	2.1	359
7	Cellular and Molecular Mechanisms Underlying Perturbed Energy Metabolism and Neuronal Degeneration in Alzheimer's and Parkinson's Diseases. Annals of the New York Academy of Sciences, 1999, 893, 154-175.	3.8	326
8	A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. Journal of Neurochemistry, 2001, 77, 220-228.	3.9	316
9	Apoptosis-Inducing Factor Triggered by Poly(ADP-Ribose) Polymerase and Bid Mediates Neuronal Cell Death after Oxygen-Glucose Deprivation and Focal Cerebral Ischemia. Journal of Neuroscience, 2005, 25, 10262-10272.	3.6	309
10	AMP-Activated Protein Kinase is Highly Expressed in Neurons in the Developing Rat Brain and Promotes Neuronal Survival Following Glucose Deprivation. Journal of Molecular Neuroscience, 2001, 17, 45-58.	2.3	307
11	Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. Lancet, The, 2013, 382, 516-524.	13.7	295
12	Neurodegenerative disorders and ischemic brain diseases. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 69-81.	4.9	289
13	Apoptotic and antiapoptotic mechanisms in stroke. Cell and Tissue Research, 2000, 301, 173-187.	2.9	285
14	Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death and Differentiation, 2012, 19, 1446-1458.	11.2	280
15	Transforming Growth Factor-β1 Increases Bad Phosphorylation and Protects Neurons Against Damage. Journal of Neuroscience, 2002, 22, 3898-3909.	3.6	258
16	BID links ferroptosis to mitochondrial cell death pathways. Redox Biology, 2017, 12, 558-570.	9.0	245
17	Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radical Biology and Medicine, 2018, 117, 45-57.	2.9	223
18	Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death and Differentiation, 2007, 14, 775-784.	11.2	189

#	Article	IF	CITATIONS
19	Upregulation of the Enzyme Chain Hydrolyzing Extracellular ATP after Transient Forebrain Ischemia in the Rat. Journal of Neuroscience, 1998, 18, 4891-4900.	3.6	181
20	Neuroprotection by Estrogens in a Mouse Model of Focal Cerebral Ischemia and in Cultured Neurons: Evidence for a Receptor-Independent Antioxidative Mechanism. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1263-1269.	4.3	171
21	Parkin Mediates Neuroprotection through Activation of IÂB Kinase/Nuclear Factor-ÂB Signaling. Journal of Neuroscience, 2007, 27, 1868-1878.	3.6	171
22	The Catalytic Subunit of Telomerase Is Expressed in Developing Brain Neurons and Serves a Cell Survival-Promoting Function. Journal of Molecular Neuroscience, 2000, 14, 003-016.	2.3	163
23	Nuclear Translocation of Apoptosis-Inducing Factor after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 458-466.	4.3	160
24	Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience, 2004, 123, 897-906.	2.3	146
25	Molecular Insights into Mechanisms of the Cell Death Program:Role in the Progression of Neurodegenerative Disorders. Current Alzheimer Research, 2006, 3, 269-283.	1.4	145
26	Reciprocal Inhibition of p53 and Nuclear Factor-κB Transcriptional Activities Determines Cell Survival or Death in Neurons. Journal of Neuroscience, 2003, 23, 8586-8595.	3.6	136
27	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
28	Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death and Disease, 2019, 10, 865.	6.3	112
29	Central Inhibition of IKKβ/NF-κB Signaling Attenuates High-Fat Diet–Induced Obesity and Glucose Intolerance. Diabetes, 2015, 64, 2015-2027.	0.6	106
30	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	12.4	106
31	Presenilin-1 Mutations Sensitize Neurons to DNA Damage-Induced Death by a Mechanism Involving Perturbed Calcium Homeostasis and Activation of Calpains and Caspase-12. Neurobiology of Disease, 2002, 11, 2-19.	4.4	103
32	Neurobiology of the major psychoses: a translational perspective on brain structure and function—the FOR2107 consortium. European Archives of Psychiatry and Clinical Neuroscience, 2019, 269, 949-962.	3.2	103
33	Corticotropin-Releasing Hormone Protects Neurons against Insults Relevant to the Pathogenesis of Alzheimer's Disease. Neurobiology of Disease, 2001, 8, 492-503.	4.4	102
34	Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery, 2017, 3, 17076.	4.7	100
35	Stimulation of β-adrenoceptors activates astrocytes and provides neuroprotection. European Journal of Pharmacology, 2002, 446, 25-36.	3.5	94
36	Combination Therapy in Ischemic Stroke: Synergistic Neuroprotective Effects of Memantine and Clenbuterol. Stroke, 2004, 35, 1197-1202.	2.0	90

#	Article	IF	CITATIONS
37	Targeting the p53 pathway to protect the neonatal ischemic brain. Annals of Neurology, 2011, 70, 255-264.	5.3	88
38	Impedance measurement for real time detection of neuronal cell death. Journal of Neuroscience Methods, 2012, 203, 69-77.	2.5	88
39	Adaptive Plasticity in Tachykinin and Tachykinin Receptor Expression after Focal Cerebral Ischemia Is Differentially Linked to GABAergic and Glutamatergic Cerebrocortical Circuits and Cerebrovenular Endothelium. Journal of Neuroscience, 2001, 21, 798-811.	3.6	87
40	Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12602-12606.	7.1	87
41	Clenbuterol induces growth factor mRNA, activates astrocytes, and protects rat brain tissue against ischemic damage. European Journal of Pharmacology, 1999, 379, 33-45.	3.5	85
42	The Potential Role of Ferroptosis in Neonatal Brain Injury. Frontiers in Neuroscience, 2019, 13, 115.	2.8	83
43	Mitochondrial Small Conductance SK2 Channels Prevent Glutamate-induced Oxytosis and Mitochondrial Dysfunction. Journal of Biological Chemistry, 2013, 288, 10792-10804.	3.4	80
44	Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochemistry International, 2007, 50, 243-250.	3.8	78
45	Proteomic Analysis Reveals Differences in Protein Expression in Spheroid versus Monolayer Cultures of Low-Passage Colon Carcinoma Cells. Journal of Proteome Research, 2007, 6, 4111-4118.	3.7	78
46	Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death. Brain, Behavior, and Immunity, 2010, 24, 831-838.	4.1	78
47	A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chemical Biology, 2017, 24, 493-506.e5.	5.2	76
48	Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. Journal of Controlled Release, 2008, 132, 113-123.	9.9	75
49	Causal Role of Apoptosis-Inducing Factor for Neuronal Cell Death Following Traumatic Brain Injury. American Journal of Pathology, 2008, 173, 1795-1805.	3.8	75
50	Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death and Disease, 2017, 8, e3063-e3063.	6.3	74
51	Hippocampal neurons of mice deficient in DNA-dependent protein kinase exhibit increased vulnerability to DNA damage, oxidative stress and excitotoxicity. Molecular Brain Research, 2001, 87, 257-262.	2.3	72
52	p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones. Journal of Neurochemistry, 2002, 81, 594-605.	3.9	65
53	Aberrant Stress Response Associated with Severe Hypoglycemia in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 1999, 13, 159-166.	2.3	64
54	Mitochondria, Microglia, and the Immune System—How Are They Linked in Affective Disorders?. Frontiers in Psychiatry, 2018, 9, 739.	2.6	64

#	Article	IF	CITATIONS
55	Egr-1 Regulates Expression of the Glial Scar Component Phosphacan in Astrocytes after Experimental Stroke. American Journal of Pathology, 2008, 173, 77-92.	3.8	57
56	Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death and Disease, 2014, 5, e999-e999.	6.3	56
57	Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death and Disease, 2014, 5, e993-e993.	6.3	54
58	Stimulation of β2-Adrenoceptors Inhibits Apoptosis in Rat Brain after Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 1032-1039.	4.3	52
59	Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium, 2018, 69, 101-111.	2.4	52
60	<i>Cacna1c</i> haploinsufficiency leads to pro-social 50-kHz ultrasonic communication deficits in rats. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	51
61	KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death and Disease, 2011, 2, e147-e147.	6.3	49
62	Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. Journal of Controlled Release, 2010, 142, 392-403.	9.9	48
63	Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiology of Aging, 2014, 35, 1700-1711.	3.1	48
64	The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro-Oncology, 2015, 17, 1474-1485.	1.2	48
65	SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake. Cell Death and Differentiation, 2017, 24, 761-773.	11.2	48
66	Targeting of Polyplexes: Toward Synthetic Virus Vector Systems. Advances in Genetics, 2005, 53PA, 333-354.	1.8	44
67	Evidence for the Involvement of Par-4 in Ischemic Neuron Cell Death. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 334-343.	4.3	43
68	Synthesis and characterization of chemically condensed oligoethylenimine containing beta-aminopropionamide linkages for siRNA delivery. Biomaterials, 2007, 28, 3731-3740.	11.4	43
69	Nitric Oxide Donors Induce Neurotrophin-Like Survival Signaling and Protect Neurons against Apoptosis. Molecular Pharmacology, 2005, 68, 1006-1017.	2.3	42
70	Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. European Journal of Pharmacology, 1999, 373, 21-33.	3.5	40
71	Stimulation of 5-HT1A receptors reduces apoptosis after transient forebrain ischemia in the rat. Brain Research, 2000, 883, 41-50.	2.2	38
72	Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death and Disease, 2016, 7, e2214-e2214.	6.3	38

#	Article	IF	CITATIONS
73	α 1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. Journal of Neuroinflammation, 2014, 11, 165.	7.2	37
74	Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death. Cell Death and Differentiation, 2016, 23, 814-827.	11.2	37
75	Extracellular Alpha-Synuclein Oligomers Induce Parkin S-Nitrosylation: Relevance to Sporadic Parkinson's Disease Etiopathology. Molecular Neurobiology, 2019, 56, 125-140.	4.0	37
76	Activation of <i>KCNN3</i> /SK3/K _{Ca} 2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Glia, 2012, 60, 2050-2064.	4.9	36
77	Protective Roles for Potassium SK/KCa2 Channels in Microglia and Neurons. Frontiers in Pharmacology, 2012, 3, 196.	3.5	35
78	Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 47-56.	2.9	35
79	Actin(g) on mitochondria – a role for cofilin1 in neuronal cell death pathways. Biological Chemistry, 2019, 400, 1089-1097.	2.5	34
80	SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death and Disease, 2020, 11, 263.	6.3	34
81	Lubeluzole protects hippocampal neurons from excitotoxicity in vitro and reduces brain damage caused by ischemia. European Journal of Pharmacology, 1998, 342, 193-201.	3.5	33
82	lschaemic brain damage after stroke: new insights into efficient therapeutic strategies. EMBO Reports, 2007, 8, 129-133.	4.5	32
83	Small conductance Ca 2+ -activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochemistry International, 2017, 109, 13-23.	3.8	31
84	SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2. Neurochemistry International, 2015, 81, 63-75.	3.8	30
85	Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells. Cell Death Discovery, 2018, 4, 54.	4.7	29
86	Sexâ€dependent effects of <i>Cacna1c</i> haploinsufficiency on juvenile social play behavior and proâ€social 50â€kHz ultrasonic communication in rats. Genes, Brain and Behavior, 2020, 19, e12552.	2.2	29
87	Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death and Differentiation, 2018, 25, 1394-1407.	11.2	28
88	AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 1027-1038.	4.9	27
89	Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget, 2017, 8, 34111-34127.	1.8	27
90	Dynasore Blocks Ferroptosis through Combined Modulation of Iron Uptake and Inhibition of Mitochondrial Respiration. Cells, 2020, 9, 2259.	4.1	27

#	Article	IF	CITATIONS
91	RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathologica Communications, 2021, 9, 138.	5.2	27
92	Free Fatty Acids in Bone Pathophysiology of Rheumatic Diseases. Frontiers in Immunology, 2019, 10, 2757.	4.8	26
93	Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implications for Parkinson's Disease Pathology. Frontiers in Aging Neuroscience, 2021, 13, 591475.	3.4	26
94	The neuroprotective role of microglial cells against amyloid betaâ€mediated toxicity in organotypic hippocampal slice cultures. Brain Pathology, 2020, 30, 589-602.	4.1	25
95	The tyrosine phosphatase inhibitor orthovanadate mimics NGF-induced neuroprotective signaling in rat hippocampal neurons. Neurochemistry International, 2004, 44, 505-520.	3.8	24
96	Enantio-selective effects of clenbuterol in cultured neurons and astrocytes, and in a mouse model of cerebral ischemia. European Journal of Pharmacology, 2007, 575, 57-65.	3.5	20
97	Sex differences in neonatal mouse brain injury after hypoxiaâ€ischemia and adaptaquin treatment. Journal of Neurochemistry, 2019, 150, 759-775.	3.9	20
98	The VAMPâ€associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB Journal, 2018, 32, 6159-6173.	0.5	19
99	A new approach on assessing clinical pharmacists' impact on prescribing errors in a surgical intensive care unit. International Journal of Clinical Pharmacy, 2019, 41, 1184-1192.	2.1	18
100	Metabolic switch induced by Cimicifuga racemosa extract prevents mitochondrial damage and oxidative cell death. Phytomedicine, 2019, 52, 107-116.	5.3	16
101	SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Biochemical Pharmacology, 2020, 171, 113714.	4.4	16
102	Drug Safety Analysis in a Real-Life Cohort of Parkinson's Disease Patients with Polypharmacy. CNS Drugs, 2017, 31, 1093-1102.	5.9	15
103	Protamine Sulfate Induces Mitochondrial Hyperpolarization and a Subsequent Increase in Reactive Oxygen Species Production. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 308-317.	2.5	15
104	Pifithrin-Î \pm provides neuroprotective effects at the level of mitochondria independently of p53 inhibition. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1665-1677.	4.9	14
105	Novel <i>N</i> -Phenyl–Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 273-289.	2.5	14
106	Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death and Disease, 2021, 12, 953.	6.3	14
107	One protein, different cell fate: the differential outcome of depleting GRP75 during oxidative stress in neurons. Cell Death and Disease, 2018, 9, 32.	6.3	13
108	Psychiatric risk gene Cacna1c determines mitochondrial resilience against oxidative stress in neurons. Cell Death and Disease, 2018, 9, 645.	6.3	13

#	Article	IF	CITATIONS
109	A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. Journal of Neurochemistry, 2008, 77, 220-228.	3.9	11
110	Statins — increasing or reducing the risk of Parkinson's disease?. Experimental Neurology, 2011, 228, 1-4.	4.1	11
111	The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1545-1558.	4.9	11
112	Inhibition of Carbonic Anhydrase 2 Overcomes Temozolomide Resistance in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 157.	4.1	11
113	Mechanisms of neuronal degeneration after ischemic stroke – Emerging targets for novel therapeutic strategies. Drug Discovery Today Disease Mechanisms, 2005, 2, 463-470.	0.8	10
114	Effects of Raf-1 siRNA on human cerebral microvascular endothelial cells: A potential therapeutic strategy for inhibition of tumor angiogenesis. Brain Research, 2006, 1125, 147-154.	2.2	10
115	<i>N</i> â€Acyl Derivatives of 4â€Phenoxyaniline as Neuroprotective Agents. ChemMedChem, 2014, 9, 2260-2273.	3.2	10
116	Central Application of Aliskiren, a Renin Inhibitor, Improves Outcome After Experimental Stroke Independent of Its Blood Pressure Lowering Effect. Frontiers in Neurology, 2019, 10, 942.	2.4	10
117	Medication Review by Community Pharmacists for Type 2 Diabetes Patients in Routine Care: Results of the DIATHEM-Study. Frontiers in Pharmacology, 2020, 11, 1176.	3.5	10
118	SK channel activation is neuroprotective in conditions of enhanced ER–mitochondrial coupling. Cell Death and Disease, 2018, 9, 593.	6.3	8
119	Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production. Cells, 2022, 11, 992.	4.1	8
120	Cimicifuga racemosa Extract Ze 450 Re-Balances Energy Metabolism and Promotes Longevity. Antioxidants, 2021, 10, 1432.	5.1	7
121	Targeting β2-Adrenoceptors for Neuroprotection After Cerebral Ischemia: Is Inhibition or Stimulation Best?. Anesthesia and Analgesia, 2009, 108, 3-5.	2.2	6
122	Emerging pharmacotherapeutic strategies for the treatment of ischemic stroke. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 621-628.	0.5	5
123	Oxidative stress and neurodegeneration. Neurochemistry International, 2013, 62, 521.	3.8	5
124	Characterization of Novel Diphenylamine Compounds as Ferroptosis Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 184-196.	2.5	5
125	Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death. Journal of Medicinal Chemistry, 2021, 64, 11445-11459.	6.4	5
126	Interaction of the Psychiatric Risk Gene Cacna1c With Post-weaning Social Isolation or Environmental Enrichment Does Not Affect Brain Mitochondrial Bioenergetics in Rats. Frontiers in Cellular Neuroscience, 2019, 13, 483.	3.7	4

#	Article	IF	CITATIONS
127	Treat more than heat—New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. Phytomedicine, 2022, 100, 154060.	5.3	4
128	Overexpression of suppressor of cytokine signaling 3 in the arcuate nucleus of juvenile Phodopus sungorus alters seasonal body weight changes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 1101-1111.	1.5	3
129	Effects of Cimicifuga racemosa extract Ze450 on mitochondria in models of oxidative stress in neuronal cells. Data in Brief, 2018, 21, 1872-1879.	1.0	3
130	Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Scientific Reports, 2021, 11, 4789.	3.3	2
131	Involvement of Apoptosis-Inducing Factor (AIF) in Neuronal Cell Death Following Cerebral Ischemia. , 2018, , 103-114.		1
132	Significant Role of Apoptosis-Inducing Factor (AIF) for Brain Damage Following Focal Cerebral Ischemia. , 2010, , 91-101.		1
133	SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. Journal of Inflammation Research, 2022, Volume 15, 509-531.	3.5	1
134	Metabolic effects of Cimicifuga racemosa extract Ze450 on neuronal cells. Maturitas, 2019, 124, 139.	2.4	0
135	Antiproliferative effects of cimicifuga racemosa root extract Ze 450 mediated by inhibition of oxidative phosphorylation and indirect AMPK activation. Maturitas, 2019, 124, 138.	2.4	0
136	Apoptosis inducing factor (AIF) is essential for neuronal cell death following transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S466-S466.	4.3	0
137	Metabolic escape to glycolysis through SK channel activation inhibits ferroptosis and increases the life span of C. elegans in conditions of heat stress. FASEB Journal, 2019, 33, 665.7.	0.5	0