Natasha Hurley-Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846653/publications.pdf

Version: 2024-02-01

147 papers 5,827 citations

35 h-index 71 g-index

148 all docs 148 docs citations

times ranked

148

4126 citing authors

#	Article	IF	CITATIONS
1	A radio transient with unusually slow periodic emission. Nature, 2022, 601, 526-530.	27.8	61
2	Mysterious odd radio circle near the large magellanic cloud – an intergalactic supernova remnant?. Monthly Notices of the Royal Astronomical Society, 2022, 512, 265-284.	4.4	14
3	Early-time searches for coherent radio emission from short GRBs with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	9
4	Searching for the synchrotron cosmic web again: A replication attempt. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	4
5	Wide-band spectral variability of peaked spectrum sources. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5358-5373.	4.4	4
6	G17.8 \hat{A} + \hat{A} 16.7: A new supernova remnant. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2920-2927.	4.4	5
7	Selecting and modelling remnant AGNs with limited spectral coverage. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3466-3484.	4.4	4
8	High time resolution search for prompt radio emission from the long GRB 210419A with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2756-2768.	4.4	4
9	Murchison Widefield Array rapid-response observations of the short GRB 180805A. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
10	Unexpected circular radio objects at high Galactic latitude. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	29
11	Remnant radio galaxies discovered in a multi-frequency survey. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	20
12	GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey III: South Galactic Pole data release. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	8
13	The GLEAM 200-MHz local radio luminosity function for AGN and star-forming galaxies. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	1
14	The Location of Young Pulsar PSR J0837–2454: Galactic Halo or Local Supernova Remnant?. Astrophysical Journal, 2021, 911, 121.	4.5	2
15	Hoinga: a supernova remnant discovered in the SRG/eROSITA All-Sky Survey eRASS1. Astronomy and Astrophysics, 2021, 648, A30.	5.1	15
16	One unit to rule them all. Nature Physics, 2021, 17, 868-868.	16.7	0
17	Radio continuum sources behind the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2885-2904.	4.4	5
18	Forging a sustainable future for astronomy. Nature Astronomy, 2021, 5, 857-860.	10.1	9

#	Article	IF	CITATIONS
19	A broadband radio view of transient jet ejecta in the black hole candidate X-ray binary MAXI J1535–571. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	4
20	Spectral variability of radio sources at low frequencies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6139-6155.	4.4	11
21	The POlarised GLEAM Survey (POGS) II: Results from an all-sky rotation measure synthesis survey at long wavelengths. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	19
22	Dark matter annihilation in <mml:math altimg="si41.svg" display="inline" id="d1e698" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\;\model\m</mml:mi></mml:math>	4.9	2
23	Ionospheric Irregularities Observed During the GLEAM Survey. Radio Science, 2020, 55, e2020RS007106.	1.6	13
24	A magnetar parallax. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3736-3743.	4.4	11
25	Modelling and peeling extended sources with shapelets: A Fornax A case study. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	11
26	Calibration database for the Murchison Widefield Array All-Sky Virtual Observatory. Publications of the Astronomical Society of Australia, 2020, 37, .	3 . 4	7
27	The GLEAM 4-Jy (G4Jy) Sample: II. Host galaxy identification for individual sources. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	12
28	The GLEAM 4-Jy (G4Jy) Sample: I. Definition and the catalogue. Publications of the Astronomical Society of Australia, 2020, 37, .	3 . 4	13
29	Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey. Monthly Notices of the Royal Astronomical Society, 2020, 494, 135-145.	4.4	9
30	Estimating the Jet Power of Mrk 231 during the 2017–2018 Flare. Astrophysical Journal, 2020, 891, 59.	4.5	7
31	Radio observations of supernova remnant G1.9+0.3. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2606-2621.	4.4	14
32	Discovery of a radio transient in M81. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1181-1196.	4.4	7
33	<i>Murchison</i> Widefield Array and <i>XMM-Newton</i> observations of the Galactic supernova remnant G5.9+3.1. Astronomy and Astrophysics, 2019, 625, A93.	5.1	1
34	Discovery of a pulsar-powered bow shock nebula in the Small Magellanic Cloud supernova remnant DEM S5. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2507-2524.	4.4	13
35	Robbie: A batch processing work-flow for the detection of radio transients and variables. Astronomy and Computing, 2019, 27, 23-33.	1.7	4
36	Source counts and confusion at $72\hat{a}\in 231$ MHz in the MWA GLEAM survey. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	23

#	Article	IF	CITATIONS
37	A Supernova Remnant Counterpart for HESS J1832â^'085. Astrophysical Journal, 2019, 885, 129.	4.5	2
38	New candidate radio supernova remnants detected in the GLEAM survey over $345\hat{A}^{\circ}$ < <i>> < i>< 60\hat{A}°, $180\hat{A}^{\circ}$ < <i> < i>< 240\hat{A}°. Publications of the Astronomical Society of Australia, 2019, 36, .</i></i>	3.4	13
39	Candidate radio supernova remnants observed by the GLEAM survey over 345° < <i> </i> < 60° and 180° < <i> </i> < 240°. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	16
40	GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey II: Galactic plane 345° & lt; <i>l</i> < <i>l</i> < <i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<i < i=""></i <></i> < <i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<<i>lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345° & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345Ű & lt;<lossession Widefield Array (GLEAM) survey II: Galactic plane 345Ű & lt;<<td>3.4</td><td>30</td></i></i></i></i></i></i></i></i></i>	3.4	30
41	Science with the Murchison Widefield Array: Phase I results and Phase II opportunities. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	29
42	Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions. Scientific Reports, 2018, 8, 1676.	3.3	38
43	Low-Frequency Carbon Recombination Lines in the Orion Molecular Cloud Complex. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	2
44	Source Finding in the Era of the SKA (Precursors): <scp>Aegean</scp> 2.0. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	119
45	De-distorting ionospheric effects in the image plane. Astronomy and Computing, 2018, 25, 94-102.	1.7	25
46	The POlarised GLEAM Survey (POGS) I: First results from a low-frequency radio linear polarisation survey of the southern sky. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	22
47	Galactic synchrotron distribution derived from 152 H ii region absorption features in the full GLEAM survey. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4041-4055.	4.4	13
48	Measuring the global 21-cm signal with the MWA-I: improved measurements of the Galactic synchrotron background using lunar occultation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5034-5045.	4.4	20
49	A multifrequency radio continuum study of the Magellanic Clouds – I. Overall structure and star formation rates. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2743-2756.	4.4	21
50	The spectral energy distribution of powerful starburst galaxies – I. Modelling the radio continuum. Monthly Notices of the Royal Astronomical Society, 2018, 474, 779-799.	4.4	32
51	The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4056-4072.	4.4	20
52	A Molecular Line Survey around Orion at Low Frequencies with the MWA. Astrophysical Journal, 2018, 860, 145.	4.5	4
53	GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey – I. A low-frequency extragalactic catalogue. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1146-1167.	4.4	402
54	The Relativistic Jet-accretion Flow–wind Connection in Mrk 231. Astrophysical Journal, 2017, 836, 155.	4.5	12

#	Article	IF	CITATIONS
55	Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies. Astrophysical Journal, 2017, 838, 68.	4.5	23
56	Extragalactic Peaked-spectrum Radio Sources at Low Frequencies. Astrophysical Journal, 2017, 836, 174.	4.5	112
57	A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
58	A first look for molecules between 103 and 133 MHz using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4144-4154.	4.4	9
59	A search for long-time-scale, low-frequency radio transients. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1944-1953.	4.4	30
60	Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
61	Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	51
62	A Southern-Sky Total Intensity Source Catalogue at 2.3 GHz from $<$ i>>S $<$ /i>-Band Polarisation All-Sky Survey Data. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	16
63	Galactic synchrotron emissivity measurements between 250° < $\langle i \rangle \langle j \rangle \rangle$ from the GLEAM survey with the MWA. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3163-3174.	4.4	12
64	High-energy sources at low radio frequency: the Murchison Widefield Array view of <i>Fermi </i> blazars. Astronomy and Astrophysics, 2016, 588, A141.	5.1	31
65	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	4.5	58
66	DELAY SPECTRUM WITH PHASE-TRACKING ARRAYS: EXTRACTING THE H i POWER SPECTRUM FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2016, 833, 213.	4.5	15
67	A new angle for probing fieldâ€aligned irregularities with the Murchison Widefield Array. Radio Science, 2016, 51, 659-679.	1.6	3
68	The radio spectral energy distribution of infrared-faint radio sources. Astronomy and Astrophysics, 2016, 593, A130.	5.1	8
69	A Large-Scale, Low-Frequency Murchison Widefield Array Survey of Galactic H <scp>ii</scp> Regions between 260 < <i> </i> < 340. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	16
70	lonospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	8
71	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	4.5	147
72	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	4.5	65

#	Article	IF	CITATIONS
73	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	4.4	27
74	Density duct formation in the wake of a travelling ionospheric disturbance: Murchison Widefield Array observations. Journal of Geophysical Research: Space Physics, 2016, 121, 1569-1586.	2.4	11
75	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	4.5	67
76	Time-domain and spectral properties of pulsars at 154ÂMHz. Monthly Notices of the Royal Astronomical Society, 2016, 461, 908-921.	4.4	35
77	Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A. Monthly Notices of the Royal Astronomical Society, 2016, 462, 290-297.	4.4	15
78	Limits on Fast Radio Bursts and other transient sources at 182ÂMHz using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3506-3522.	4.4	70
79	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	4.4	79
80	Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1057-1070.	4.4	68
81	CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR. Astrophysical Journal, 2016, 818, 139.	4.5	98
82	GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	221
83	lonospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	13
84	MURCHISON WIDEFIELD ARRAY OBSERVATIONS OF ANOMALOUS VARIABILITY: A SERENDIPITOUS NIGHT-TIME DETECTION OF INTERPLANETARY SCINTILLATION. Astrophysical Journal Letters, 2015, 809, L12.	8.3	19
85	Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array. Radio Science, 2015, 50, 574-597.	1.6	30
86	Empirical covariance modeling for $21 {\rm \^A} {\rm cm}$ power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data. Physical Review D, 2015, 91, .	4.7	99
87	BROADBAND SPECTRAL MODELING OF THE EXTREME GIGAHERTZ-PEAKED SPECTRUM RADIO SOURCE PKS B0008-421. Astrophysical Journal, 2015, 809, 168.	4.5	65
88	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
89	Waves in the sky: Probing the ionosphere with the Murchison Widefield Array. , 2015, , .		0
90	AMI Galactic Plane Survey at 16ÂGHz – II. Full data release with extended coverage and improved processing. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1396-1403.	4.4	10

#	Article	IF	CITATIONS
91	An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4207-4214.	4.4	12
92	Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2732-2747.	4.4	24
93	Realâ€time imaging of density ducts between the plasmasphere and ionosphere. Geophysical Research Letters, 2015, 42, 3707-3714.	4.0	61
94	Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Transactions on Antennas and Propagation, 2015, 63, 5433-5442.	5.1	57
95	Serendipitous discovery of a dying Giant Radio Galaxy associated with NGCÂ1534, using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2468-2478.	4.4	31
96	CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal Letters, 2015, 807, L28.	8.3	73
97	The Murchison Widefield Array Correlator. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	39
98	The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	107
99	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	4.5	122
100	Modelling of the spectral energy distribution of Fornax A: leptonic and hadronic production of high-energy emission from the radio lobes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3478-3491.	4.4	41
101	Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2014, 446, 2560-2565.	4.4	39
102	The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667. Monthly Notices of the Royal Astronomical Society, 2014, 445, 330-346.	4.4	39
103	Antenna array characterization via radio interferometry observation of astronomical sources. , 2014, ,		4
104	wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices of the Royal Astronomical Society, 2014, 444, 606-619.	4.4	562
105	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
106	First look Murchison Widefield Array observations of Abell 3667., 2014, , .		0
107	A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz. Monthly Notices of the Royal Astronomical Society, 2014, 438, 352-367.	4.4	54
108	The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees. Publications of the Astronomical Society of Australia, 2014, 31, .	3.4	62

#	Article	IF	Citations
109	Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Nature, 2013, 493, 187-190.	27.8	108
110	AMI SZ observations and Bayesian analysis of a sample of six redshift-one clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 431, 900-911.	4.4	7
111	A joint analysis of AMI and CARMA observations of the recently discovered SZ galaxy cluster system AMI-CL J0300+2613. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2036-2046.	4.4	8
112	Sunyaev-Zel'dovich observations with AMI of the hottest galaxy clusters detected in the XMM-Newton Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2920-2937.	4.4	7
113	AMI Galactic Plane Survey at 16 GHz - I. Observing, mapping and source extraction. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3330-3340.	4.4	39
114	The radio source count at 93.2 GHz from observations of 9C sources using AMI and CARMA. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1961-1969.	4.4	1
115	ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY. Astronomical Journal, 2013, 146, 103.	4.7	34
116	Investigating the Source of Planck-Detected AME: High-Resolution Observations at 15 GHz. Advances in Astronomy, 2013, 2013, 1-9.	1.1	3
117	A BLAZAR-LIKE RADIO FLARE IN MRK 231. Astrophysical Journal Letters, 2013, 776, L21.	8.3	14
118	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
119	Bayesian analysis of weak gravitational lensing and Sunyaev-Zel'dovich data for six galaxy clustersâ~ Monthly Notices of the Royal Astronomical Society, 2012, 419, 2921-2942.	4.4	17
120	AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens regionâ~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 1019-1033.	4.4	7
121	Radio continuum observations of Class I protostellar discs in Taurus: constraining the greybody tail at centimetre wavelengthsa~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 3334-3343.	4.4	15
122	Arcminute Microkelvin Imager observations of unmatched Planck ERCSC LFI sources at 15.75 GHz*. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L6-L10.	3.3	2
123	Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observationsã~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 1136-1154.	4.4	8
124	AMI radio continuum observations of young stellar objects with known outflowsa~ Monthly Notices of the Royal Astronomical Society, 2012, 423, 1089-1108.	4.4	19
125	A blind detection of a large, complex, Sunyaev-Zel'dovich structureã~ Monthly Notices of the Royal Astronomical Society, 2012, 423, 1463-1473.	4.4	7
126	Detailed Sunyaev-Zel'dovich study with AMI of 19 LoCuSS galaxy clusters: masses and temperatures out to the virial radius. Monthly Notices of the Royal Astronomical Society, 2012, 425, 162-203.	4.4	22

#	Article	IF	Citations
127	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
128	AMI Large Array radio continuum observations of Spitzer c2d small clouds and coresã~ Monthly Notices of the Royal Astronomical Society, 2011, 410, 2662-2678.	4.4	13
129	AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Perseus regionâ~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 893-910.	4.4	18
130	10C survey of radio sources at 15.7 GHz - I. Observing, mapping and source extractionã~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 2699-2707.	4.4	45
131	10C survey of radio sources at 15.7 GHz - II. First resultsa~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 2708-2722.	4.4	25
132	Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imagerâ~ Monthly Notices of the Royal Astronomical Society, 2011, 418, 2754-2772.	4.4	16
133	Further Sunyaev-Zel'dovich observations of two <i>Planck</i> ERCSC clusters with the Arcminute Microkelvin Imager. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 414, L75-L79.	3.3	10
134	Sunyaev-Zel'dovich observation of the Bullet-like cluster Abell 2146 with the Arcminute Microkelvin Imagerâ~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 3751-3763.	4.4	23
135	High-resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 µm emission and evidence of a stellar wind in L675. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 403, L46-L50.	3.3	18
136	Microwave observations of spinning dust emission in NGC6946. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 406, L45-L49.	3.3	31
137	AMI observations of northern supernova remnants at 14-18 GHz. Monthly Notices of the Royal Astronomical Society, 2009, 396, 365-376.	4.4	29
138	G64.5+0.9: a new shell supernova remnant with unusual central emission. Monthly Notices of the Royal Astronomical Society, 2009, 398, 249-254.	4.4	6
139	Follow-up observations at 16 and 33���GHz of extragalactic sources from <i>WMAP</i> 3-yr data: l ��² Spectral properties. Monthly Notices of the Royal Astronomical Society, 2009, 400, 984-994.	2;; <u>1/</u> 2 4.4	25
140	AMI observations of Lynds dark nebulae: further evidence for anomalous cm-wave emission. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1394-1412.	4.4	32
141	Follow-up observations at 16 and 33���GHz of extragalactic sources from <i>WMAP</i> 3-yr data: II �ï¿⅓ density variability. Monthly Notices of the Royal Astronomical Society, 2009, 400, 995-1005.	/2 <u>;</u> ;½ Flux	13
142	An excess of emission in the dark cloud LDN1111 with the Arcminute Microkelvin Imager. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 394, L46-L50.	3.3	24
143	AMI limits on 15-GHz excess emission in northern HÂii regions. Monthly Notices of the Royal Astronomical Society, 2008, 385, 809-822.	4.4	33
144	The Arcminute Microkelvin Imager ^{ã~} . Monthly Notices of the Royal Astronomical Society, 2008, 391, 1545-1558.	4.4	189

#	Article	IF	CITATIONS
145	A study of halo and relic radio emission in merging clusters using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 0, , stx155.	4.4	7
146	The Murchison Widefield Array Transients Survey (MWATS). A search for low frequency variability in a bright Southern hemisphere sample. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	9
147	High-resolution Observations of Low-luminosity Gigahertz-Peaked Spectrum and Compact Steep Spectrum Sources. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10