

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846443/publications.pdf

Version: 2024-02-01

Æ04a;ݰÅ″"

#	Article	IF	CITATIONS
1	Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Materialia, 2010, 58, 5354-5362.	7.9	344
2	Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 2010, 58, 3984-3994.	7.9	325
3	Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Materialia, 2017, 127, 252-266.	7.9	276
4	Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures. Applied Surface Science, 2018, 431, 122-134.	6.1	51
5	Surface oxidation phenomenon and mechanism of AISI 304 stainless steel induced by Nd:YAG pulsed laser. Applied Surface Science, 2014, 305, 817-824.	6.1	49
6	Effects of coverage layer on the electrochemical corrosion behaviour of Mg-Al-Mn alloy subjected to massive laser shock peening treatment. Journal of Alloys and Compounds, 2019, 782, 1058-1075.	5.5	49
7	Effect of Dy2O3 intergranular addition on thermal stability andÂcorrosion resistance of Nd–Fe–B magnets. Intermetallics, 2014, 55, 118-122.	3.9	43
8	Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers. Optics and Laser Technology, 2017, 88, 250-262.	4.6	36
9	Microstructure evolution and mechanical properties of aging 6061 Al alloy via laser shock processing. Journal of Alloys and Compounds, 2019, 803, 1112-1118.	5.5	36
10	Effects of service temperature on tensile properties and microstructural evolution of CP titanium subjected to laser shock peening. Journal of Alloys and Compounds, 2019, 770, 732-741.	5.5	28
11	Microstructure and corrosion behavior of the AISI 304 stainless steel after Nd:YAG pulsed laser surface melting. Surface and Coatings Technology, 2011, 206, 1146-1154.	4.8	23
12	Effects of Marangoni convection on the embedding dynamic behavior of SiC nano-particles into the Al molten pool during laser micro-melting. Materials and Design, 2018, 143, 256-267.	7.0	23
13	Novel morphologies and growth mechanism of Cr2O3 oxide formed on stainless steel surface via Nd: YAG pulsed laser oxidation. Journal of Alloys and Compounds, 2015, 635, 101-106.	5.5	21
14	Magnetic properties and microstructure of sintered Nd Fe B magnets with intergranular addition of Ni powders. Journal of Alloys and Compounds, 2017, 726, 846-851.	5.5	18
15	Magnetic properties, thermal stability, and microstructure of spark plasma sintered multi-main-phase Nd-Ce-Fe-B magnet with PrCu addition. Journal of Alloys and Compounds, 2020, 822, 153612.	5.5	16
16	Enhanced magnetic properties and thermal stability of spark plasma sintered multi-main-phase Nd-Ce-Fe-B magnet via co-adding DyF3 and Cu. Journal of Alloys and Compounds, 2022, 902, 163786.	5.5	13
17	Microstructure and tensile properties of the sub-micro and nano-structured Al produced by laser surface melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7400-7406.	5.6	12
18	Investigation of different surface morphologies formed on AISI 304 stainless steel via millisecond Nd:YAG pulsed laser oxidation. Optics and Laser Technology, 2012, 44, 815-820.	4.6	11

#	Article	IF	CITATIONS
19	Modeling, calculation, and experimental verification on the implantation depth of laser shock wave-driven WC nanoparticle into 5A06 aluminum alloy. Journal of Alloys and Compounds, 2018, 762, 334-339.	5.5	6