Margret Wohlfahrt-Mehrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846154/publications.pdf Version: 2024-02-01

Margret

#	Article	IF	CITATIONS
1	Experimental Confirmation of C-Rate Dependent Minima Shifts in Arrhenius Plots of Li-Ion Battery Aging. Journal of the Electrochemical Society, 2022, 169, 030509.	2.9	11
2	Enabling Fastâ€Charging Lithiumâ€lon Battery Anodes: Influence of Spheroidization on Natural Graphite. Batteries and Supercaps, 2022, 5, .	4.7	13
3	Cross-Sectional In Situ Optical Microscopy with Simultaneous Electrochemical Measurements for Lithium-Ion Full Cells. Journal of the Electrochemical Society, 2022, 169, 050519.	2.9	12
4	Detection of Li Deposition on Si/Graphite Anodes from Commercial Li-Ion Cells: A Post-Mortem GD-OES Depth Profiling Study. Journal of the Electrochemical Society, 2022, 169, 050533.	2.9	9
5	Insights Into Thermal Runaway of Li–Ion Cells by Accelerating Rate Calorimetry Coupled with External Sensors and Online Gas Analysis. Batteries and Supercaps, 2021, 4, 1135-1144.	4.7	20
6	3D-Printed Testing Plate for the Optimization of High C-Rates Cycling Performance of Lithium-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 050508.	2.9	3
7	Fast Charging of Lithiumâ€Ion Batteries: A Review of Materials Aspects. Advanced Energy Materials, 2021, 11, 2101126.	19.5	407
8	Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging. Batteries, 2021, 7, 48.	4.5	18
9	Aqueous Processing of LiNi0.83Co0.12Mn0.05O2 Positive Electrodes Using Established Water-Based Binders. ECS Meeting Abstracts, 2021, MA2021-02, 1908-1908.	0.0	0
10	Manufacturing Process for Improved Ultraâ€īhick Cathodes in Highâ€Energy Lithiumâ€ion Batteries. Energy Technology, 2020, 8, 1900167.	3.8	89
11	Lowâ€Temperature Charging and Aging Mechanisms of Si/C Composite Anodes in Liâ€Ion Batteries: An Operando Neutron Scattering Study. ChemSusChem, 2020, 13, 529-538.	6.8	31
12	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	7.8	401
13	Evaluation of Scalable Porous Siâ€Rich Si/C Composites with Low Volume Expansion in Coin Cells to Prismatic Cell Formats. Energy Technology, 2020, 8, 2000217.	3.8	16
14	Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology. Journal of the Electrochemical Society, 2020, 167, 013546.	2.9	105
15	Influence of the Electrolyte Salt Concentration on the Rate Capability of Ultraâ€Thick NCM 622 Electrodes. Batteries and Supercaps, 2020, 3, 1172-1182.	4.7	25
16	Mechanical behavior of Silicon-Graphite pouch cells under external compressive load: Implications and opportunities for battery pack design. Journal of Power Sources, 2020, 451, 227774.	7.8	31
17	Communication—Edge Quality Contribution on the Electrical Impedance of Lithium-Ion Batteries Electrodes. Journal of the Electrochemical Society, 2020, 167, 080504.	2.9	5
18	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073.	7.8	109

MARGRET

#	Article	IF	CITATIONS
19	4-Electrode Full Cells for Operando Li ⁺ Activity Measurements and Prevention of Li Deposition in Li-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 090525.	2.9	15
20	Mechanistic Details of the Spontaneous Intercalation of Li Metal into Graphite Electrodes. Journal of the Electrochemical Society, 2020, 167, 140546.	2.9	12
21	Study of the Binder Influence on Expansion/Contraction Behavior of Silicon Alloy Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160537.	2.9	17
22	Surface Film Formation and Dissolution in Si/C Anodes of Li-Ion Batteries: A Glow Discharge Optical Emission Spectroscopy Depth Profiling Study. Journal of Physical Chemistry C, 2019, 123, 18795-18803.	3.1	21
23	Study of the influence of mechanical pressure on the performance and aging of Lithium-ion battery cells. Journal of Power Sources, 2019, 440, 227148.	7.8	95
24	Biphenyl-Bridged Organosilica as a Precursor for Mesoporous Silicon Oxycarbide and Its Application in Lithium and Sodium Ion Batteries. Nanomaterials, 2019, 9, 754.	4.1	12
25	Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells. Electrochimica Acta, 2019, 306, 387-395.	5.2	52
26	Effects of Mechanical Compression on the Aging and the Expansion Behavior of Si/C-Composite NMC811 in Different Lithium-Ion Battery Cell Formats. Journal of the Electrochemical Society, 2019, 166, A3796-A3805.	2.9	68
27	Li plating as unwanted side reaction in commercial Li-ion cells – A review. Journal of Power Sources, 2018, 384, 107-124.	7.8	521
28	Templateâ€Đerived Submicrometric Carbon Spheres for Lithium–Sulfur and Sodiumâ€ion Battery Electrodes. Energy Technology, 2018, 6, 1797-1804.	3.8	13
29	Communication—Detection of Si Distribution in Si/C Composite Anodes by Glow Discharge Optical Emission Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A3602-A3604.	2.9	6
30	Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes. Energies, 2018, 11, 2948.	3.1	39
31	Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. Journal of the Electrochemical Society, 2018, 165, A3284-A3291.	2.9	125
32	Communication—Quantitative Analysis of Consumption of Fluoroethylene Carbonate Additives on Silicon Alloy Anodes. Journal of the Electrochemical Society, 2018, 165, A2467-A2469.	2.9	18
33	Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells. Electrochimica Acta, 2017, 230, 454-460.	5.2	93
34	High performance 1.2ÂAh Si-alloy/Graphite LiNi 0.5 Mn 0.3 Co 0.2 O 2 prototype Li-ion battery. Journal of Power Sources, 2017, 357, 188-197.	7.8	44
35	Effects of Biphenyl Polymerization on Lithium Deposition in Commercial Graphite/NMC Lithium-Ion Pouch-Cells during Calendar Aging at High Temperature. Journal of the Electrochemical Society, 2017, 164, A1089-A1097.	2.9	63
36	Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application. Journal of Physical Chemistry C, 2017, 121, 21865-21876.	3.1	43

MARGRET

#	Article	IF	CITATIONS
37	Electrochemical, Post-Mortem, and ARC Analysis of Li-Ion Cell Safety in Second-Life Applications. Journal of the Electrochemical Society, 2017, 164, A3154-A3162.	2.9	83
38	Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques. Journal of the Electrochemical Society, 2016, 163, A2149-A2164.	2.9	203
39	Inhomogeneous Degradation of Graphite Anodes in Li-Ion Cells: A Postmortem Study Using Glow Discharge Optical Emission Spectroscopy (GD-OES). Journal of Physical Chemistry C, 2016, 120, 22225-22234.	3.1	62
40	Origin of the Synergetic Effects of LiFe _{0.3} Mn _{0.7} PO ₄ – Spinel Blends via Dynamic In Situ X-ray Diffraction Measurements. Journal of the Electrochemical Society, 2016, 163, A1936-A1940.	2.9	18
41	Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measurements with Reconstructed 3-Electrode Pouch Full Cells. Journal of the Electrochemical Society, 2016, 163, A1232-A1238.	2.9	136
42	Influence of current collecting tab design on thermal and electrochemical performance of cylindrical Lithium-ion cells during high current discharge. Journal of Energy Storage, 2016, 5, 163-168.	8.1	23
43	Correlations between Electrochemical Data and Results from Post-Mortem Analysis of Aged Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1500-A1505.	2.9	37
44	Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. Journal of the Electrochemical Society, 2015, 162, A3084-A3097.	2.9	262
45	Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An In Operando Study. Journal of the Electrochemical Society, 2015, 162, A921-A927.	2.9	97
46	Optimization of Charging Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments. Electrochimica Acta, 2015, 178, 525-532.	5.2	158
47	Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. Journal of Power Sources, 2015, 274, 432-439.	7.8	241
48	Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources, 2014, 262, 129-135.	7.8	772