Stefano Merler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4845466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk of Symptomatic Infection During a Second Coronavirus Disease 2019 Wave in Severe Acute Respiratory Syndrome Coronavirus 2–Seropositive Individuals. Clinical Infectious Diseases, 2022, 74, 893-896.	5.8	5
2	Pressure on the Health-Care System and Intensive Care Utilization During the COVID-19 Outbreak in the Lombardy Region of Italy: A Retrospective Observational Study in 43,538 Hospitalized Patients. American Journal of Epidemiology, 2022, 191, 137-146.	3.4	34
3	Characterizing the transmission patterns of seasonal influenza in Italy: lessons from the last decade. BMC Public Health, 2022, 22, 19.	2.9	11
4	Model-based evaluation of alternative reactive class closure strategies against COVID-19. Nature Communications, 2022, 13, 322.	12.8	17
5	Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021. Eurosurveillance, 2022, 27, .	7.0	20
6	COVID-19 response: effectiveness of weekly rapid risk assessments, Italy. Bulletin of the World Health Organization, 2022, 100, 161-167.	3.3	10
7	The New Quadrivalent Adjuvanted Influenza Vaccine for the Italian Elderly: A Health Technology Assessment. International Journal of Environmental Research and Public Health, 2022, 19, 4166.	2.6	11
8	Early prediction of SARS-CoV-2 reproductive number from environmental, atmospheric and mobility data: A supervised machine learning approach. International Journal of Medical Informatics, 2022, 162, 104755.	3.3	3
9	Investigating the relationship between interventions, contact patterns, and SARS-CoV-2Atransmissibility. Epidemics, 2022, 40, 100601.	3.0	7
10	Intrinsic generation time of the SARS-CoV-2 Omicron variant: An observational study of household transmission. Lancet Regional Health - Europe, The, 2022, 19, 100446.	5.6	34
11	Impact of a Nationwide Lockdown on SARS-CoV-2 Transmissibility, Italy. Emerging Infectious Diseases, 2021, 27, 267-270.	4.3	64
12	Inferring high-resolution human mixing patterns for disease modeling. Nature Communications, 2021, 12, 323.	12.8	161
13	Association of Age With Likelihood of Developing Symptoms and Critical Disease Among Close Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy. JAMA Network Open, 2021, 4, e211085.	5.9	127
14	Modeling the interplay between demography, social contact patterns, and SARS-CoV-2 transmission in the South West Shewa Zone of Oromia Region, Ethiopia. BMC Medicine, 2021, 19, 89.	5.5	13
15	Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nature Human Behaviour, 2021, 5, 1009-1020.	12.0	81
16	Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. Nature Communications, 2021, 12, 4570.	12.8	45
17	Retrospective analysis of the Italian exit strategy from COVID-19 lockdown. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	72
18	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 2021, 600, 127-132.	27.8	61

#	Article	IF	CITATIONS
19	Individual's daily behaviour and intergenerational mixing in different social contexts of Kenya. Scientific Reports, 2021, 11, 21589.	3.3	6
20	The early phase of the COVID-19 epidemic in Lombardy, Italy. Epidemics, 2021, 37, 100528.	3.0	158
21	A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden. Epidemics, 2021, 37, 100530.	3.0	8
22	The effect of COVID-19 vaccination in Italy and perspectives for living with the virus. Nature Communications, 2021, 12, 7272.	12.8	40
23	Navigating Concepts in the Human Mind Unravels the Latent Geometry of Its Semantic Space. Complexity, 2021, 2021, 1-13.	1.6	4
24	Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. NeuroImage, 2020, 205, 116237.	4.2	130
25	A normalized dataset of 1821 cortical and subcortical functional responses collected during direct electrical stimulation in patients undergoing awake brain surgery. Data in Brief, 2020, 28, 104892.	1.0	17
26	Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy: a modeling analysis. BMC Medicine, 2020, 18, 226.	5.5	17
27	Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 2020, 4, 964-971.	12.0	605
28	A comparative analysis of the 2007 and 2017 Italian chikungunya outbreaks and implication for public health response. PLoS Neglected Tropical Diseases, 2020, 14, e0008159.	3.0	17
29	The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020, 368, 395-400.	12.6	2,784
30	Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, 2020, 368, 1481-1486.	12.6	942
31	Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infectious Diseases, The, 2020, 20, 793-802.	9.1	541
32	Heterogeneity in social and epidemiological factors determines the risk of measles outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30118-30125.	7.1	14
33	The COVID-19 outbreak in Sichuan, China: Epidemiology and impact of interventions. PLoS Computational Biology, 2020, 16, e1008467.	3.2	17
34	Potential short-term outcome of an uncontrolled COVID-19 epidemic in Lombardy, Italy, February to March 2020. Eurosurveillance, 2020, 25, .	7.0	47
35	Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Eurosurveillance, 2020, 25, .	7.0	51
36	Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Eurosurveillance, 2020, 25, .	7.0	121

#	Article	IF	CITATIONS
37	Household transmission and disease transmissibility of a large HAV outbreak in Lazio, Italy, 2016–2017. Epidemics, 2019, 29, 100351.	3.0	8
38	Quantifying the transmission dynamics of MRSA in the community and healthcare settings in a low-prevalence country. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14599-14605.	7.1	26
39	The introduction of †No jab, No school' policy and the refinement of measles immunisation strategies in high-income countries. BMC Medicine, 2019, 17, 86.	5.5	23
40	Effectiveness of Ultra-Low Volume insecticide spraying to prevent dengue in a non-endemic metropolitan area of Brazil. PLoS Computational Biology, 2019, 15, e1006831.	3.2	16
41	Assessing the risk of autochthonous yellow fever transmission in Lazio, central Italy. PLoS Neglected Tropical Diseases, 2019, 13, e0006970.	3.0	3
42	First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasites and Vectors, 2019, 12, 524.	2.5	20
43	Parental vaccination to reduce measles immunity gaps in Italy. ELife, 2019, 8, .	6.0	8
44	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 2018, 22, 13-21.	3.0	185
45	The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation. Epidemics, 2018, 22, 3-12.	3.0	19
46	Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Medicine, 2018, 16, 195.	5.5	11
47	Measurability of the epidemic reproduction number in data-driven contact networks. Proceedings of the United States of America, 2018, 115, 12680-12685.	7.1	199
48	The hidden burden of measles in Ethiopia: how distance to hospital shapes the disease mortality rate. BMC Medicine, 2018, 16, 177.	5.5	23
49	Modeling the impact of changes in day-care contact patterns on the dynamics of varicella transmission in France between 1991 and 2015. PLoS Computational Biology, 2018, 14, e1006334.	3.2	10
50	Different Clinical Phenotypes of Embolic Stroke of Undetermined Source: A Subgroup Analysis of 86 Patients. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3578-3586.	1.6	9
51	The containment of potential outbreaks triggered by imported Chikungunya cases in Italy: a cost utility epidemiological assessment of vector control measures. Scientific Reports, 2018, 8, 9034.	3.3	10
52	The impact of demographic changes, exogenous boosting and new vaccination policies on varicella and herpes zoster in Italy: a modelling and cost-effectiveness study. BMC Medicine, 2018, 16, 117.	5.5	29
53	Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nature Communications, 2018, 9, 2837.	12.8	38
54	Population dynamics of wild rodents induce stochastic fadeouts of a zoonotic pathogen. Journal of Animal Ecology, 2017, 86, 451-459.	2.8	12

#	Article	IF	CITATIONS
55	The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasites and Vectors, 2017, 10, 102.	2.5	39
56	Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Medicine, 2017, 15, 42.	5.5	63
57	Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4334-E4343.	7.1	249
58	Detecting a Surprisingly Low Transmission Distance in the Early Phase of the 2009 Influenza Pandemic. Scientific Reports, 2017, 7, 12324.	3.3	9
59	Measles immunity gaps and the progress towards elimination: a multi-country modelling analysis. Lancet Infectious Diseases, The, 2017, 17, 1089-1097.	9.1	42
60	Impact of mass effect, tumor location, age, and surgery on the cognitive outcome of patients with high-grade gliomas: a longitudinal study. Neuro-Oncology Practice, 2017, 4, 229-240.	1.6	37
61	The interplay between individual social behavior and clinical symptoms in small clustered groups. BMC Infectious Diseases, 2017, 17, 521.	2.9	7
62	Effectiveness and economic assessment of routine larviciding for prevention of chikungunya and dengue in temperate urban settings in Europe. PLoS Neglected Tropical Diseases, 2017, 11, e0005918.	3.0	30
63	Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. PLoS ONE, 2017, 12, e0170459.	2.5	84
64	First outbreak of Zika virus in the continental United States: a modelling analysis. Eurosurveillance, 2017, 22, .	7.0	17
65	Transmission dynamics of the ongoing chikungunya outbreak in Central Italy: from coastal areas to the metropolitan city of Rome, summer 2017. Eurosurveillance, 2017, 22, .	7.0	44
66	Potential Risk of Dengue and Chikungunya Outbreaks in Northern Italy Based on a Population Model of Aedes albopictus (Diptera: Culicidae). PLoS Neglected Tropical Diseases, 2016, 10, e0004762.	3.0	34
67	Containing Ebola at the Source with Ring Vaccination. PLoS Neglected Tropical Diseases, 2016, 10, e0005093.	3.0	54
68	Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Human Brain Mapping, 2016, 37, 3858-3872.	3.6	69
69	Effects of clustered transmission on epidemic growth Comment on "Mathematical models to characterize early epidemic growth: A review―by Gerardo Chowell et al Physics of Life Reviews, 2016, 18, 112-113.	2.8	1
70	School closure policies at municipality level for mitigating influenza spread: a model-based evaluation. BMC Infectious Diseases, 2016, 16, 576.	2.9	22
71	Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Medicine, 2016, 14, 130.	5.5	30
72	The Epidemiology of Herpes Zoster After Varicella Immunization Under Different Biological Hypotheses: Perspectives From Mathematical Modeling. American Journal of Epidemiology, 2016, 183, 765-773.	3.4	30

#	Article	IF	CITATIONS
73	Model-Based Comprehensive Analysis of School Closure Policies for Mitigating Influenza Epidemics and Pandemics. PLoS Computational Biology, 2016, 12, e1004681.	3.2	39
74	The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy. PLoS ONE, 2016, 11, e0154018.	2.5	48
75	Assessing the potential risk of Zika virus epidemics in temperate areas with established Aedes albopictus populations. Eurosurveillance, 2016, 21, .	7.0	39
76	The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions. BMC Medicine, 2015, 13, 281.	5.5	50
77	Towards a functional atlas of human white matter. Human Brain Mapping, 2015, 36, 3117-3136.	3.6	150
78	Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infectious Diseases, The, 2015, 15, 204-211.	9.1	226
79	Effectiveness of contact investigations for tuberculosis control in Arkansas. Journal of Theoretical Biology, 2015, 380, 238-246.	1.7	12
80	Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings. BMC Medicine, 2015, 13, 49.	5.5	56
81	The impact of demographic changes on the epidemiology of herpes zoster: Spain as a case study. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142509.	2.6	30
82	Behavioral Changes and Adaptation Induced by Epidemics. , 2015, , 155-175.		0
83	Deciphering the relative weights of demographic transition and vaccination in the decrease of measles incidence in Italy. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132676.	2.6	28
84	The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Scientific Reports, 2014, 4, 7218.	3.3	32
85	Estimating measles transmission potential in Italy over the period 2010-2011. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 351-6.	0.4	1
86	Containing the accidental laboratory escape of potential pandemic influenza viruses. BMC Medicine, 2013, 11, 252.	5.5	30
87	Hope-Simpson's Progressive Immunity Hypothesis as a Possible Explanation for Herpes Zoster Incidence Data. American Journal of Epidemiology, 2013, 177, 1134-1142.	3.4	35
88	Perspectives on the Impact of Varicella Immunization on Herpes Zoster. A Model-Based Evaluation from Three European Countries. PLoS ONE, 2013, 8, e60732.	2.5	64
89	Pandemic Influenza A/H1N1pdm in Italy: Age, Risk and Population Susceptibility. PLoS ONE, 2013, 8, e74785.	2.5	17
90	A Combinatorial Model of Malware Diffusion via Bluetooth Connections. PLoS ONE, 2013, 8, e59468.	2.5	4

6

#	Article	IF	CITATIONS
91	Uncoordinated Human Responses During Epidemic Outbreaks. , 2013, , 79-91.		3
92	Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread. PLoS Computational Biology, 2012, 8, e1002673.	3.2	166
93	Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic. Mathematical Biosciences, 2012, 238, 80-89.	1.9	109
94	Transmission Potential and Design of Adequate Control Measures for Marburg Hemorrhagic Fever. PLoS ONE, 2012, 7, e50948.	2.5	28
95	Epidemiology and transmission dynamics of the 1918–19 pandemic influenza in Florence, Italy. Vaccine, 2011, 29, 827-832.	3.8	7
96	The Effect of Risk Perception on the 2009 H1N1 Pandemic Influenza Dynamics. PLoS ONE, 2011, 6, e16460.	2.5	152
97	Model predictions and evaluation of possible control strategies for the 2009 A/H1N1v influenza pandemic in Italy. Epidemiology and Infection, 2011, 139, 68-79.	2.1	39
98	Spatiotemporal dynamics of viral hepatitis A in Italy. Theoretical Population Biology, 2011, 79, 1-11.	1.1	6
99	Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting. Journal of Theoretical Biology, 2011, 289, 197-205.	1.7	32
100	Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling. PLoS Computational Biology, 2011, 7, e1002205.	3.2	102
101	Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy. PLoS ONE, 2011, 6, e18860.	2.5	122
102	Human mobility and population heterogeneity in the spread of an epidemic. Procedia Computer Science, 2010, 1, 2237-2244.	2.0	17
103	Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 2010, 10, 190.	2.9	222
104	Chikungunya Virus in North-Eastern Italy: A Seroprevalence Survey. American Journal of Tropical Medicine and Hygiene, 2010, 82, 508-511.	1.4	123
105	The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 557-565.	2.6	223
106	Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data. PLoS Computational Biology, 2010, 6, e1001021.	3.2	69
107	Age-prioritized use of antivirals during an influenza pandemic. BMC Infectious Diseases, 2009, 9, 117.	2.9	27
108	An individual-based model of hepatitis A transmission. Journal of Theoretical Biology, 2009, 259, 478-488.	1.7	27

#	Article	IF	CITATIONS
109	Spontaneous behavioural changes in response to epidemics. Journal of Theoretical Biology, 2009, 260, 31-40.	1.7	127
110	Coinfection can trigger multiple pandemic waves. Journal of Theoretical Biology, 2008, 254, 499-507.	1.7	46
111	Integrating gene expression profiling and clinical data. International Journal of Approximate Reasoning, 2008, 47, 58-69.	3.3	8
112	Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics, 2008, 24, 258-264.	4.1	85
113	The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling. PLoS ONE, 2008, 3, e1519.	2.5	21
114	Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios. PLoS ONE, 2008, 3, e1790.	2.5	143
115	Machine learning methods for predictive proteomics. Briefings in Bioinformatics, 2007, 9, 119-128.	6.5	65
116	A Grid Environment for High-Throughput Proteomics. IEEE Transactions on Nanobioscience, 2007, 6, 117-123.	3.3	8
117	Parallelizing AdaBoost by weights dynamics. Computational Statistics and Data Analysis, 2007, 51, 2487-2498.	1.2	32
118	Combining feature selection and DTW for time-varying functional genomics. IEEE Transactions on Signal Processing, 2006, 54, 2436-2443.	5.3	24
119	Terminated Ramp–Support Vector Machines: A nonparametric data dependent kernel. Neural Networks, 2006, 19, 1597-1611.	5.9	11
120	Proteome Profiling without Selection Bias. , 2006, , .		4
121	Strategies for containing an influenza pandemic: the case of Italy. , 2006, , .		1
122	Semisupervised Profiling of Gene Expressions and Clinical Data. Lecture Notes in Computer Science, 2006, , 284-289.	1.3	0
123	Semisupervised Learning for Molecular Profiling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 110-118.	3.0	21
124	BIAS-VARIANCE CONTROL VIA HARD POINTS SHAVING. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18, 891-903.	1.2	16
125	Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics, 2003, 4, 54.	2.6	116
126	An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 2003, 16, 641-648.	5.9	62

#	Article	IF	CITATIONS
127	Automatic model selection in cost-sensitive boosting. Information Fusion, 2003, 4, 3-10.	19.1	15
128	Geographical Information Systems and Bootstrap Aggregation (Bagging) of Tree-Based Classifiers for Lyme Disease Risk Prediction in Trentino, Italian Alps. Journal of Medical Entomology, 2002, 39, 485-492.	1.8	61
129	Highlighting Hard Patterns via AdaBoost Weights Evolution. Lecture Notes in Computer Science, 2002, , 72-80.	1.3	4
130	Tuning Cost-Sensitive Boosting and Its Application to Melanoma Diagnosis. Lecture Notes in Computer Science, 2001, , 32-42.	1.3	11
131	Searching for mechanisms of synchrony in spatially structured gamebird populations. Journal of Animal Ecology, 2000, 69, 620-638.	2.8	71
132	Synchrony, scale and temporal dynamics of rock partridge (Alectoris graeca saxatilis) populations in the Dolomites. Journal of Animal Ecology, 1999, 68, 540-549.	2.8	40
133	Speaker Normalization and Model Selection of Combined Neural Networks. Connection Science, 1997, 9, 31-50.	3.0	3
134	Selection of Tree-Biased Classifiers with the Bootstrap 632+ Rule. Biometrical Journal, 1997, 39, 369-382.	1.0	7
135	Classification Tree Methods for Analysis of Mesoscale Distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. Journal of Medical Entomology, 1996, 33, 888-893.	1.8	37