
Laurent Bollinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4845361/publications.pdf Version: 2024-02-01

LAUPENT BOLLINCEP

#	Article	IF	CITATIONS
1	Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research, 2012, 117, .	3.3	419
2	Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. Journal of Geodesy, 2006, 80, 567-589.	3.6	289
3	Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 2013, 6, 71-76.	12.9	288
4	Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 2015, 349, 1091-1095.	12.6	287
5	Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research, 2010, 115, .	3.3	245
6	Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth and Planetary Science Letters, 2006, 244, 58-71.	4.4	223
7	Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 2008, 266, 332-344.	4.4	204
8	Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics, 2004, 23, n/a-n/a.	2.8	187
9	Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. Journal of Geophysical Research: Solid Earth, 2014, 119, 7123-7163.	3.4	182
10	Current shortening across the Himalayas of Nepal. Geophysical Journal International, 2004, 157, 1-14.	2.4	179
11	Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters, 2004, 225, 233-241.	4.4	172
12	Rupture process of the <i>M_w</i> = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophysical Research Letters, 2015, 42, 8373-8382.	4.0	170
13	Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth and Planetary Science Letters, 2007, 264, 226-244.	4.4	168
14	Stress buildup in the Himalaya. Journal of Geophysical Research, 2004, 109, .	3.3	148
15	Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology, 2012, 40, 1059-1062.	4.4	136
16	Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research, 2008, 113, .	3.3	128
17	Seasonal modulation of seismicity in the Himalaya of Nepal. Geophysical Research Letters, 2007, 34, .	4.0	112
18	The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake. Geophysical Journal International, 2015, 203, 2119-2124.	2.4	108

LAURENT BOLLINGER

#	Article	IF	CITATIONS
19	Slip deficit in central Nepal: omen for a repeat of the 1344 AD earthquake?. Earth, Planets and Space, 2016, 68, .	2.5	89
20	Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: The "torrent de St Pierreâ€, French Alps. Journal of Hydrology, 2011, 408, 43-53.	5.4	77
21	Evidence for the release of longâ€term tectonic strain stored in continental interiors through intraplate earthquakes. Geophysical Research Letters, 2016, 43, 6826-6836.	4.0	62
22	Spatiotemporal sequence of Himalayan debris flow from analysis of highâ€frequency seismic noise. Journal of Geophysical Research, 2009, 114, .	3.3	55
23	Geologic Inheritance and Earthquake Rupture Processes: The 1905 MÂ≥Â8 Tsetserlegâ€Bulnay Strikeâ€Slip Earthquake Sequence, Mongolia. Journal of Geophysical Research: Solid Earth, 2018, 123, 1925-1953.	3.4	53
24	Building the Himalaya from tectonic to earthquake scales. Nature Reviews Earth & Environment, 2021, 2, 251-268.	29.7	53
25	A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth and Planetary Science Letters, 2009, 278, 198-207.	4.4	49
26	Evidence for Mio-Pliocene retrograde monazite in the Lesser Himalaya, far western Nepal. European Journal of Mineralogy, 2006, 18, 289-297.	1.3	47
27	Horizontal coseismic deformation of the 2003 Bam (Iran) earthquake measured from SPOT-5 THR satellite imagery. Geophysical Research Letters, 2005, 32, .	4.0	45
28	Surface ruptures of large Himalayan earthquakes in Western Nepal: Evidence along a reactivated strand of the Main Boundary Thrust. Earth and Planetary Science Letters, 2016, 434, 187-196.	4.4	44
29	Imaging the Moho and the Main Himalayan Thrust in Western Nepal With Receiver Functions. Geophysical Research Letters, 2018, 45, 13,222.	4.0	36
30	Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nature Communications, 2018, 9, 2956.	12.8	36
31	Influence of viscous layers on the growth of normal faults: insights from experimental and numerical models. Journal of Structural Geology, 2003, 25, 1471-1485.	2.3	33
32	Discontinuous low-velocity zones in southern Tibet question the viability of the channel flow model. Geological Society Special Publication, 2011, 353, 99-108.	1.3	30
33	Fatality rates of the M wÂ~8.2, 1934, Bihar–Nepal earthquake and comparison with the April 2015 Gorkha earthquake. Earth, Planets and Space, 2016, 68, .	2.5	27
34	Automatic analysis of the Gorkha earthquake aftershock sequence: evidences of structurally segmented seismicity. Geophysical Journal International, 2017, 209, 1111-1125.	2.4	27
35	Large-scale organization of carbon dioxide discharge in the Nepal Himalayas. Geophysical Research Letters, 2014, 41, 6358-6366.	4.0	26
36	Lateral variations of the midcrustal seismicity in western Nepal: Seismotectonic implications. Earth and Planetary Science Letters, 2018, 504, 115-125.	4.4	23

LAURENT BOLLINGER

#	Article	IF	CITATIONS
37	Postseismic deformation following the April 25, 2015 Gorkha earthquake (Nepal): Afterslip versus viscous relaxation. Journal of Asian Earth Sciences, 2019, 176, 105-119.	2.3	22
38	Post Earthquake Aggradation Processes to Hide Surface Ruptures in Thrust Systems: The M8.3, 1934, Biharâ€Nepal Earthquake Ruptures at Charnath Khola (Eastern Nepal). Journal of Geophysical Research: Solid Earth, 2019, 124, 9182-9207.	3.4	21
39	Lateral structure variations and transient swarm revealed by seismicity along the Main Himalayan Thrust north of Kathmandu. Tectonophysics, 2017, 714-715, 107-116.	2.2	18
40	FMHex20: An earthquake focal mechanism database for seismotectonic analyses in metropolitan France and bordering regions. Bulletin - Societie Geologique De France, 2021, 192, 10.	2.2	17
41	Le cycle sismique en Himalaya. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planètes =, 2001, 333, 513-529.	0.2	16
42	Hydrological triggering of the seismicity around a salt diapir in Castellane, France. Earth and Planetary Science Letters, 2010, 290, 20-29.	4.4	16
43	Effective radium concentration across the Main Central Thrust in the Nepal Himalayas. Geochimica Et Cosmochimica Acta, 2012, 98, 203-227.	3.9	16
44	A decade of seismicity in metropolitan France (2010–2019): the CEA/LDG methodologies and observations. Bulletin - Societie Geologique De France, 2021, 192, 25.	2.2	16
45	Teleseismic depth estimation of the 2015 Gorkhaâ^'Nepal aftershocks. Geophysical Journal International, 2016, 207, 1584-1595.	2.4	15
46	Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence (Pakistan). Journal of Geophysical Research: Solid Earth, 2014, 119, 5838-5854.	3.4	11
47	Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision. Pure and Applied Geophysics, 2017, 174, 3609-3633.	1.9	10
48	Multitechnology characterization of an unusual surface rupturing intraplate earthquake: the ML 5.4 2019 Le Teil event in France. Geophysical Journal International, 2021, 226, 803-813.	2.4	9
49	Uplift of the 2004 Sumatraâ€Andaman earthquake measured from differential hyperspectral imagery of coastal waters. Journal of Geophysical Research, 2008, 113, .	3.3	8
50	25,000 Years long seismic cycle in a slow deforming continental region of Mongolia. Scientific Reports, 2021, 11, 17855.	3.3	8
51	Testing Fault Models in Intraplate Settings: A Potential for Challenging the Seismic Hazard Assessment Inputs and Hypothesis?. Pure and Applied Geophysics, 2020, 177, 1879-1889.	1.9	7
52	Seismicity in far western Nepal reveals flats and ramps along the Main Himalayan Thrust. Geophysical Journal International, 2021, 226, 1747-1763.	2.4	6
53	Orogenic Collapse and Stress Adjustments Revealed by an Intense Seismic Swarm Following the 2015 Gorkha Earthquake in Nepal. Frontiers in Earth Science, 2021, 9, .	1.8	6
54	Effective radium concentration in agricultural versus forest topsoils. Journal of Environmental Radioactivity, 2016, 160, 123-134.	1.7	5

LAURENT BOLLINGER

#	Article	IF	CITATIONS
55	Special issue "The 2015 Gorkha, Nepal, earthquake and Himalayan studies: First resultsâ€, Earth, Planets and Space, 2017, 69, .	2.5	5
56	Double difference relocation of local earthquakes in the Nepal Himalaya. Journal of Nepal Geological Society, 0, 46, .	0.2	4
57	Localized extension in megathrust hanging wall following great earthquakes in western Nepal. Scientific Reports, 2021, 11, 21521.	3.3	4
58	Is the Machecoul fault the source of the â^¼M6 1799 Vendée earthquake (France)?. Geophysical Journal International, 2021, 225, 2035-2059.	2.4	3
59	Establishing a reference rock site for the site effect study in and around the Kathmandu valley, Nepal. Earth, Planets and Space, 2016, 68, .	2.5	2
60	Seismic swarms in Tricastin, lower Rhône Valley (France): review of historical and instrumental seismicity and models. Comptes Rendus - Geoscience, 2021, 353, 585-606.	1.2	2
61	Structure of the crust and the lithosphere in the Himalaya-Tibet region and implications on the rheology and eclogitization of the India plate. Himalayan Journal of Sciences, 2008, 5, 65-66.	0.3	1
62	Capturing first records at the Nepal NSC accelerometric network. Journal of Nepal Geological Society, 2011, 43, 137-144.	0.2	1
63	Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision. Pageoph Topical Volumes, 2018, , 285-309.	0.2	1
64	The 2019 Le Teil surface-rupturing earthquake along the La Rouvière Fault within the Cévennes fault system (France): What does paleoseismology reveal?. E3S Web of Conferences, 2022, 342, 04001.	0.5	1