Knut Christianson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4845085/publications.pdf

Version: 2024-02-01

218677 254184 1,939 48 26 43 citations g-index h-index papers 49 49 49 2065 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 2014, 512, 310-313.	27.8	255
2	How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Global and Planetary Change, 2017, 153, 16-34.	3.5	118
3	Dynamic (in)stability of Thwaites Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2013, 118, 638-655.	2.8	88
4	Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annual Review of Earth and Planetary Sciences, 2015, 43, 207-231.	11.0	83
5	Ice-shelf tidal flexure and subglacial pressure variations. Earth and Planetary Science Letters, 2013, 361, 422-428.	4.4	79
6	Five decades of radioglaciology. Annals of Glaciology, 2020, 61, 1-13.	1.4	74
7	Understanding of Contemporary Regional Seaâ€Level Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
8	Dilatant till facilitates ice-stream flow in northeast Greenland. Earth and Planetary Science Letters, 2014, 401, 57-69.	4.4	73
9	High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophysical Research Letters, 2016, 43, 250-255.	4.0	72
10	Subglacial Lake Whillans — Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 237-245.	4.4	66
11	Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone. Journal of Geophysical Research: Oceans, 2018, 123, 7438-7452.	2.6	61
12	Dynamics of stick–slip motion, Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 2011, 305, 283-289.	4.4	60
13	Estuaries beneath ice sheets. Geology, 2013, 41, 1159-1162.	4.4	58
14	Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 2014, 8, 1275-1287.	3.9	56
15	Subglacial Lake Whillans — Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 201-209.	4.4	54
16	Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from iceâ€penetrating radar. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1954-1983.	2.8	50
17	Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology, 2020, 48, 268-272.	4.4	49
18	Ice sheet grounding zone stabilization due to till compaction. Geophysical Research Letters, 2013, 40, 5406-5411.	4.0	40

#	Article	IF	CITATIONS
19	Power loss in dipping internal reflectors, imaged using ice-penetrating radar. Annals of Glaciology, 2014, 55, 49-56.	1.4	40
20	Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the northeast Greenland ice stream. Annals of Glaciology, 2014, 55, 127-137.	1,4	40
21	Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth and Planetary Science Letters, 2019, 507, 199-206.	4.4	40
22	Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters, 2015, 42, 1418-1426.	4.0	37
23	Accelerated subglacial erosion in response to stick-slip motion. Geology, 2013, 41, 159-162.	4.4	36
24	Sediment deposition at the modern grounding zone of Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2013, 40, 3934-3939.	4.0	33
25	Ice-cliff failure via retrogressive slumping. Geology, 2019, 47, 449-452.	4.4	30
26	Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Subâ€Ice Marine Environment. Global Biogeochemical Cycles, 2020, 34, no.	4.9	29
27	Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. Journal of Glaciology, 2015, 61, 301-308.	2.2	28
28	Enhanced Firn Densification in Highâ€Accumulation Shear Margins of the NE Greenland Ice Stream. Journal of Geophysical Research F: Earth Surface, 2019, 124, 365-382.	2.8	20
29	Thermal Weakening, Convergent Flow, and Vertical Heat Transport in the Northeast Greenland Ice Stream Shear Margins. Geophysical Research Letters, 2019, 46, 8184-8193.	4.0	19
30	GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica. Cryosphere, 2017, 11, 2655-2674.	3.9	16
31	Morphology of basal crevasses at the grounding zone of Whillans Ice Stream, West Antarctica. Annals of Glaciology, 2014, 55, 57-63.	1.4	15
32	Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from groundâ€based gravity measurements. Journal of Geophysical Research: Solid Earth, 2013, 118, 4535-4546.	3.4	14
33	Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. Journal of Glaciology, 2019, 65, 580-594.	2.2	13
34	ImpDAR: an open-source impulse radar processor. Annals of Glaciology, 2020, 61, 114-123.	1.4	13
35	Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica. Cryosphere, 2020, 14, 4603-4609.	3.9	13
36	Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2019, 124, 97-115.	2.8	12

#	Article	IF	CITATIONS
37	Bedforms of Thwaites Glacier, West Antarctica: Character and Origin. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006339.	2.8	12
38	Wet subglacial bedforms of the NE Greenland Ice Stream shear margins. Annals of Glaciology, 2019, 60, 91-99.	1.4	10
39	Effect of horizontal divergence on estimates of firn-air content. Journal of Glaciology, 2021, 67, 287-296.	2.2	10
40	Constraining attenuation uncertainty in common midpoint radar surveys of ice sheets. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1876-1890.	2.8	9
41	A framework for attenuation method selection evaluated with ice-penetrating radar data at South Pole Lake. Annals of Glaciology, 2020, 61, 176-187.	1.4	9
42	The contrasting response of outlet glaciers to interior and ocean forcing. Cryosphere, 2020, 14, 2515-2535.	3.9	8
43	Grounding zone subglacial properties from calibrated active-source seismic methods. Cryosphere, 2021, 15, 1863-1880.	3.9	6
44	Persistent tracers of historic ice flow in glacial stratigraphy near Kamb Ice Stream, West Antarctica. Cryosphere, 2018, 12, 2821-2829.	3.9	5
45	A low-cost autonomous rover for polar science. Geoscientific Instrumentation, Methods and Data Systems, 2019, 8, 149-159.	1.6	4
46	Geophysics and Thermodynamics at South Pole Lake Indicate Stability and a Regionally Thawed Bed. Geophysical Research Letters, 2022, 49, .	4.0	4
47	The Impact of Basal Roughness on Inland Thwaites Glacier Sliding. Geophysical Research Letters, 2022, 49, .	4.0	3
48	Identifying flowlines and limitations of flux analyses in the interior of Thwaites Glacier, Antarctica. Annals of Glaciology, 2014, 55, 107-114.	1.4	1