Wolfgang Spielmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 323, 1360-1363.	12.6	1,140
2	Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9043-9048.	7.1	789
3	A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47, 1494-1498.	21.4	575
4	The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 2014, 5, 641.	3.6	453
5	"Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105, 1038-1042.	3.6	449
6	HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 2007, 143, 1918-1928.	4.8	378
7	A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 2008, 322, 101-104.	12.6	356
8	Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119, 889-898.	3.6	342
9	Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 2010, 37, 85.	2.1	310
10	Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006, 114, 21-30.	3.6	307
11	A Sodium Transporter (HKT7) Is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 2006, 142, 1718-1727.	4.8	266
12	Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005, 111, 423-430.	3.6	228
13	Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosomeÂ7D of wheat. Theoretical and Applied Genetics, 2005, 111, 731-735.	3.6	215
14	Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics, 2002, 104, 1317-1324.	3.6	211
15	The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants, 2015, 1, 15186.	9.3	209
16	The effect of different height reducing genes on the early growth of wheat. Functional Plant Biology, 2004, 31, 583.	2.1	196
17	Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 2005, 111, 496-504.	3.6	182
18	High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics, 2005, 112, 41-50.	3.6	175

#	Article	IF	CITATIONS
19	Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 2008, 59, 927-937.	4.8	170
20	An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 2011, 122, 735-744.	3.6	165
21	An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 2010, 121, 1083-1091.	3.6	162
22	Inhibition of Tiller Bud Outgrowth in the <i>tin</i> Mutant of Wheat Is Associated with Precocious Internode Development. Plant Physiology, 2012, 160, 308-318.	4.8	145
23	A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theoretical and Applied Genetics, 2007, 115, 59-66.	3.6	142
24	<i>Rht18</i> Semidwarfism in Wheat Is Due to Increased <i>GA 2-oxidaseA9</i> Expression and Reduced GA Content. Plant Physiology, 2018, 177, 168-180.	4.8	128
25	Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum) Tj ETQq1 1 ().784314 i 1.5	rgBT/Overloc 124
26	Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18, 41-48.	8.8	124
27	A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theoretical and Applied Genetics, 2011, 123, 615-623.	3.6	118
28	Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theoretical and Applied Genetics, 2004, 109, 1303-1310.	3.6	117
29	Identification and Validation of Markers Linked to Broad-Spectrum Stem Rust Resistance Gene in Wheat (L.). Crop Science, 2003, 43, 333.	1.8	117
30	Strategies for efficient implementation of molecular markers in wheat breeding. Molecular Breeding, 2005, 15, 75-85.	2.1	116
31	Functional Conservation of Wheat and Rice Mlo Orthologs in Defense Modulation to the Powdery Mildew Fungus. Molecular Plant-Microbe Interactions, 2002, 15, 1069-1077.	2.6	115
32	Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proceedings of the United States of America, 2008, 105, 6075-6080.	7.1	97
33	Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theoretical and Applied Genetics, 2004, 109, 847-855.	3.6	86
34	Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, 2008, 116, 481-490.	3.6	81
35	Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theoretical and Applied Genetics, 1998, 97, 633-641.	3.6	71
36	Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 112, 492-499.	3.6	70

WOLFGANG SPIELMEYER

#	Article	IF	CITATIONS
37	Resistance gene analogs in barley and their relationship to rust resistance genes. Genome, 2001, 44, 375-381.	2.0	66
38	Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome. Genome, 2004, 47, 112-121.	2.0	52
39	Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Molecular Breeding, 2014, 34, 2109-2118.	2.1	52
40	Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nature Communications, 2020, 11, 1123.	12.8	52
41	Highly Recombinogenic Regions at Seed Storage Protein Loci on Chromosome 1DS of Aegilops tauschii, the D-Genome Donor of Wheat. Genetics, 2000, 155, 361-367.	2.9	52
42	NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theoretical and Applied Genetics, 2000, 101, 1139-1144.	3.6	49
43	Resistance Gene Analogs within an Introgressed Chromosomal Segment Derived from Triticum ventricosum That Confers Resistance to Nematode and Rust Pathogens in Wheat. Molecular Plant-Microbe Interactions, 2000, 13, 334-341.	2.6	46
44	Early vigour improves phosphate uptake in wheat. Journal of Experimental Botany, 2015, 66, 7089-7100.	4.8	46
45	Identification and Validation of Markers Linked to Broad-Spectrum Stem Rust Resistance Gene in Wheat (L.). Crop Science, 2003, 43, 333.	1.8	39
46	Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. Journal of Experimental Botany, 2017, 68, 1519-1529.	4.8	39
47	Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in â€~Thatcher' Wheat. PLoS ONE, 2016, 11, e0157029.	2.5	37
48	BAC-derived markers for assaying the stem rust resistance gene, Sr2, in wheat breeding programs. Molecular Breeding, 2008, 22, 15-24.	2.1	36
49	Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biology, 2014, 14, 379.	3.6	36
50	A superfamily of disease resistance gene analogs is located on all homoeologous chromosome groups of wheat (<i>Triticum aestivum</i>). Genome, 1998, 41, 782-788.	2.0	35
51	Lr67 and Lr34 rust resistance genes have much in common – they confer broad spectrum resistance to multiple pathogens in wheat. BMC Plant Biology, 2013, 13, 96.	3.6	35
52	A Physical Map of the Short Arm of Wheat Chromosome 1A. PLoS ONE, 2013, 8, e80272.	2.5	30
53	Overgrowth mutants determine the causal role of gibberellin <i>GA2oxidaseA13</i> in <i>Rht12</i> dwarfism of wheat. Journal of Experimental Botany, 2020, 71, 7171-7178.	4.8	28
54	Homoeologous set of NBS-LRR genes located at leaf and stripe rust resistance loci on short arms of chromosome 1 of wheat. Functional and Integrative Genomics, 2003, 3, 86-90.	3.5	25

#	Article	IF	CITATIONS
55	Effect of gibberellin-sensitive <i>Rht18</i> and gibberellin-insensitive <i>Rht-D1b</i> dwarfing genes on vegetative and reproductive growth in bread wheat. Journal of Experimental Botany, 2021, 72, 445-458.	4.8	24
56	Title is missing!. Euphytica, 1998, 101, 287-291.	1.2	18
57	A superfamily of disease resistance gene analogs is located on all homoeologous chromosome groups of wheat (<i>Triticum aestivum</i>). Genome, 1998, 41, 782-788.	2.0	16
58	Wheat rust resistance research at CSIRO. Australian Journal of Agricultural Research, 2007, 58, 507.	1.5	13
59	Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat. BMC Plant Biology, 2019, 19, 332.	3.6	12
60	Adult plant leaf rust resistance derived from the wheat landrace cultivar Americano 44d is conditioned by interaction of three QTL. Euphytica, 2018, 214, 1.	1.2	10
61	Disease Resistance Evaluation of Elite CIMMYT Wheat Lines Containing the Coupled <i>Fhb1</i> and <i>Sr2</i> Genes. Plant Disease, 2020, 104, 2369-2376.	1.4	8
62	Requirements for Success in Marker-Assisted Breeding for Drought-Prone Environments. , 2007, , 479-500.		7
63	The use of SNP hybridisation arrays and cytogenetics to characterise deletions of chromosome 4B in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2016, 129, 2151-2160.	3.6	5
64	Phenotypes Conferred by Wheat Multiple Pathogen Resistance Locus, Sr2, Include Cell Death in Response to Biotic and Abiotic Stresses. Phytopathology, 2019, 109, 1751-1759.	2.2	2
65	Stem Rust Resistance: Two Approaches. , 2015, , 183-191.		2