
Jan Pielage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844721/publications.pdf Version: 2024-02-01

IAN DIFLACE

#	Article	IF	CITATIONS
1	The Ankyrin Repeat Domain Controls Presynaptic Localization of Drosophila Ankyrin2 and Is Essential for Synaptic Stability. Frontiers in Cell and Developmental Biology, 2019, 7, 148.	3.7	8
2	Selective suppression and recall of long-term memories in Drosophila. PLoS Biology, 2019, 17, e3000400.	5.6	9
3	Epidermis-Derived L1CAM Homolog Neuroglian Mediates Dendrite Enclosure and Blocks Heteroneuronal Dendrite Bundling. Current Biology, 2019, 29, 1445-1459.e3.	3.9	15
4	An ankyrin-binding motif regulates nuclear levels of L1-type neuroglian and expression of the oncogene Myc in Drosophila neurons. Journal of Biological Chemistry, 2018, 293, 17442-17453.	3.4	7
5	Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system. PLoS ONE, 2017, 12, e0183605.	2.5	18
6	Motor control of Drosophila feeding behavior. ELife, 2017, 6, .	6.0	43
7	Induced knockouts provide insights into human L1 syndrome. Journal of Experimental Medicine, 2016, 213, 466-466.	8.5	1
8	Hierarchical Microtubule Organization Controls Axon Caliber and Transport and Determines Synaptic Structure and Stability. Developmental Cell, 2015, 33, 5-21.	7.0	78
9	L1CAM/Neuroglian controls the axon–axon interactions establishing layered and lobular mushroom body architecture. Journal of Cell Biology, 2015, 208, 1003-1018.	5.2	55
10	Presynaptic CK2 promotes synapse organization and stability by targeting Ankyrin2. Journal of Cell Biology, 2014, 204, 77-94.	5.2	30
11	Transsynaptic Coordination of Synaptic Growth, Function, and Stability by the L1-Type CAM Neuroglian. PLoS Biology, 2013, 11, e1001537.	5.6	78
12	Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. Journal of Cell Biology, 2012, 198, 421-437.	5.2	57
13	Hts/Adducin Controls Synaptic Elaboration and Elimination. Neuron, 2011, 69, 1114-1131.	8.1	97
14	Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton. Journal of Cell Biology, 2009, 187, 101-117.	5.2	55
15	A Presynaptic Homeostatic Signaling System Composed of the Eph Receptor, Ephexin, Cdc42, and CaV2.1 Calcium Channels. Neuron, 2009, 61, 556-569.	8.1	158
16	A Presynaptic Giant Ankyrin Stabilizes the NMJ through Regulation of Presynaptic Microtubules and Transsynaptic Cell Adhesion. Neuron, 2008, 58, 195-209.	8.1	164
17	Distinct functions of α-Spectrin and β-Spectrin during axonal pathfinding. Development (Cambridge), 2007, 134, 713-722.	2.5	47
18	A postsynaptic Spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. Journal of Cell Biology, 2006, 175, 491-503.	5.2	109

Jan Pielage

#	Article	IF	CITATIONS
19	Presynaptic Spectrin Is Essential for Synapse Stabilization. Current Biology, 2005, 15, 918-928.	3.9	151
20	The Drosophila transmembrane protein Fear-of-intimacy controls glial cell migration. Developmental Biology, 2004, 275, 245-257.	2.0	42
21	Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster. Experimental Cell Research, 2004, 301, 242-250.	2.6	26
22	The Drosophila Cell Survival Gene discs lost Encodes a Cytoplasmic Codanin-1-like Protein, Not a Homolog of Tight Junction PDZ Protein Patj. Developmental Cell, 2003, 5, 841-851.	7.0	58
23	Novel Behavioral and Developmental Defects Associated with Drosophila single-minded. Developmental Biology, 2002, 249, 283-299.	2.0	39
24	Cell lineage specification in the nervous system. Current Opinion in Genetics and Development, 2002, 12, 473-477.	3.3	15
25	Glial cells aid axonal target selection. Trends in Neurosciences, 2001, 24, 432-433.	8.6	13