
Myriam CatalÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4844285/publications.pdf Version: 2024-02-01

Μνριαμ ζαται Δ:

#	Article	IF	CITATIONS
1	Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere, 2011, 84, 1336-1348.	8.2	300
2	Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environment International, 2010, 36, 195-201.	10.0	175
3	Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environmental Pollution, 2017, 229, 241-254.	7.5	151
4	Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere, 2011, 82, 1062-1071.	8.2	115
5	Drugs of abuse in surface and tap waters of the Tagus River basin: Heterogeneous photo-Fenton process is effective in their degradation. Environment International, 2012, 41, 35-43.	10.0	76
6	Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain). Environmental Science and Pollution Research, 2013, 20, 1396-1412.	5.3	69
7	Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere, 2010, 80, 381-388.	8.2	64
8	Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology, 2012, 21, 289-296.	2.4	59
9	The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss. Annals of Botany, 2012, 110, 1007-1016.	2.9	56
10	Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment. Science of the Total Environment, 2015, 520, 198-205.	8.0	54
11	Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environmental Research, 2016, 147, 179-192.	7.5	52
12	Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiology, 2010, 10, 297.	3.3	51
13	Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis. Journal of Hazardous Materials, 2012, 213-214, 117-122.	12.4	42
14	Nicotine occurrence in bottled mineral water: Analysis of 10 brands of water in Spain. Science of the Total Environment, 2012, 416, 527-531.	8.0	41
15	Proteomic analysis of lung biopsies: Differential protein expression profile between peritumoral and tumoral tissue. Proteomics, 2004, 4, 442-447.	2.2	33
16	Preliminary data suggest that venlafaxine environmental concentrations could be toxic to plants. Chemosphere, 2013, 90, 2065-2069.	8.2	31
17	Hepatic response to the oxidative stress induced by E. coli endotoxin: Glutathione as an index of the acute phase during the endotoxic shock. Molecular and Cellular Biochemistry, 1996, 159, 115-121.	3.1	28
18	Lichen Rehydration in Heavy Metal-Polluted Environments: Pb Modulates the Oxidative Response of Both Ramalina farinacea Thalli and Its Isolated Microalgae. Microbial Ecology, 2015, 69, 698-709.	2.8	27

MYRIAM CATALÃi

#	Article	IF	CITATIONS
19	Dehydration rate determines the degree of membrane damage and desiccation tolerance in bryophytes. Physiologia Plantarum, 2017, 159, 277-289.	5.2	26
20	Psychoactive pharmaceutical residues in the watersheds of Galicia (Spain). Gaceta Sanitaria, 2012, 26, 457-459.	1.5	25
21	The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environmental Pollution, 2013, 179, 277-284.	7.5	25
22	Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo–larval model. Journal of Hazardous Materials, 2015, 300, 866-872.	12.4	25
23	Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry, 1999, 36, 123-130.	1.8	22
24	Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: A new higher plant bioassay. Chemosphere, 2009, 77, 983-988.	8.2	22
25	From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. Applied Sciences (Switzerland), 2020, 10, 3391.	2.5	19
26	Development of cost-effective strategies for environmental monitoring of irrigated areas in Mediterranean regions: Traditional and new approaches in a changing world. Agriculture, Ecosystems and Environment, 2013, 181, 41-49.	5.3	17
27	Nitric Oxide: A Multitask Player in Plant–Microorganism Symbioses. Signaling and Communication in Plants, 2016, , 239-268.	0.7	17
28	The endocrine disruptor nonylphenol induces sublethal toxicity in vascular plant development at environmental concentrations: A risk for riparian plants and irrigated crops?. Environmental Pollution, 2016, 216, 480-486.	7.5	16
29	River waters induced neurotoxicity in an embryo–larval zebrafish model. Ecotoxicology and Environmental Safety, 2012, 84, 84-91.	6.0	11
30	Preliminary assessment of terrestrial microalgae isolated from lichens as testing species for environmental monitoring: Lichen phycobionts present high sensitivity to environmental micropollutants. Ecotoxicology and Environmental Safety, 2014, 99, 35-44.	6.0	10
31	Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation. Plants, 2019, 8, 189.	3.5	10
32	Endogenous NO Is Involved in Dissimilar Responses to Rehydration and Pb(NO3)2 in Ramalina farinacea Thalli and Its Isolated Phycobionts. Microbial Ecology, 2020, 79, 604-616.	2.8	8
33	Action of E. coli endotoxin, IL-1beta and TNF-alpha on antioxidant status of cultured hepatocytes. Molecular and Cellular Biochemistry, 2002, 231, 75-82.	3.1	7
34	New microbioassays based on biomarkers are more sensitive to fluvial water micropollution than standard testing methods. Ecotoxicology and Environmental Safety, 2013, 93, 52-59.	6.0	7
35	Lichen microalgae are sensitive to environmental concentrations of atrazine. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 223-228.	1.5	7
36	Analysis of lipid peroxidation in animal and plant tissues as field-based biomarker in Mediterranean irrigated agroecosystems (Extremadura, Spain). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 567-579.	1.5	7

MYRIAM CATALÃi

#	Article	IF	CITATIONS
37	Mitochondrial activity in fern spores of Cyathea costaricensis as an indicator of the impact of land use and water quality in rivers running through cloud forests. Chemosphere, 2017, 189, 435-444.	8.2	6
38	Biological Strategies of Lichen Symbionts to the Toxicity of Lead (Pb). Radionuclides and Heavy Metals in Environment, 2020, , 149-170.	0.8	5
39	Detection of active cell death markers in rehydrated lichen thalli and the involvement of nitrogen monoxide (NO) Symbiosis, 2020, 82, 59-67.	2.3	4
40	Mitochondrial Activity of Fern Spores for the Evaluation of Acute Toxicity in Higher Plant Development. , 2011, , 237-247.		2
41	Chronic Phytotoxicity in Gametophytes: DNA as Biomarker of Growth and Chlorophyll Autofluorescence as Biomarker of Cell Function. , 2011, , 249-260.		1
42	Response to the letter to the editor by Maraver et al. (2012). Nicotine traces detected in bottled mineral water. Science of the Total Environment, 2012, 424, 358-359.	8.0	1
43	Update on theÂAssessment of Chronic Phytotoxicity Using Fern Spore Biomarkers. , 2018, , 499-515.		0
44	Recent Advances in theÂUse of Mitochondrial Activity of Fern Spores for theÂEvaluation of Acute Toxicity. , 2018, , 481-498.		0
45	Biotechnological applications of lichen phycobionts: fast bioassay of environmental toxicity. Symbiosis, 2020, 82, 69-78.	2.3	0
46	Chemical Characterization of the Lichen-Symbiont Microalga Asterochloris erici and Study of Its Cytostatic Effect on the L929 Murine Fibrosarcoma Cell Line. Processes, 2021, 9, 1509.	2.8	0
47	Role of NO in lichens. , 2022, , 407-429.		0