Bruce A Sullenger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843710/publications.pdf

Version: 2024-02-01

74 papers

3,718 citations

28 h-index 59 g-index

77 all docs

77
docs citations

77 times ranked

4065 citing authors

#	Article	IF	CITATIONS
1	\hat{l}^2 -Cyclodextrin-containing polymer treatment of cutaneous lupus and influenza improves outcomes. Molecular Therapy, 2022, 30, 845-854.	8.2	5
2	PEGâ€Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Advanced Materials, 2022, 34, e2107852.	21.0	19
3	DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 2022, 283, 121393.	11.4	34
4	Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chemical Biology, 2022, 29, 215-225.e5.	5.2	5
5	Targeting DAMPs with nucleic acid scavengers to treat lupus. Translational Research, 2022, 245, 30-40.	5.0	6
6	Suppression of Fibrinolysis and Hypercoagulability, Severity of Hypoxemia, and Mortality in COVID-19 Patients: A Retrospective Cohort Study. Anesthesiology, 2022, 137, 67-78.	2.5	8
7	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	48.7	187
8	Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. Journal of NeuroInterventional Surgery, 2021, 13, 202-206.	3.3	75
9	Enhancing cardiac reprogramming via synthetic RNA oligonucleotides. Molecular Therapy - Nucleic Acids, 2021, 23, 55-62.	5.1	11
10	Key Pathogenic Factors in Coronavirus Disease 2019–Associated Coagulopathy and Acute Lung Injury Highlighted in a Patient With Copresentation of Acute Myelocytic Leukemia: A Case Report. A&A Practice, 2021, 15, e01432.	0.4	1
11	Controlling cancer-induced inflammation with a nucleic acid scavenger prevents lung metastasis in murine models of breast cancer. Molecular Therapy, 2021, 29, 1772-1781.	8.2	18
12	Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Science Advances, 2021, 7 , .	10.3	42
13	Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. Molecular Therapy - Nucleic Acids, 2021, 26, 1-10.	5.1	11
14	IL-10 and class 1 histone deacetylases act synergistically and independently on the secretion of proinflammatory mediators in alveolar macrophages. PLoS ONE, 2021, 16, e0245169.	2.5	10
15	Rapid test to assess the escape of SARS-CoV-2 variants of concern. Science Advances, 2021, 7, eabl7682.	10.3	21
16	Aptamers as Reversible Sorting Ligands for Preparation of Cells in Their Native State. Cell Chemical Biology, 2020, 27, 232-244.e7.	5.2	18
17	Histone Deacetylase 7 Inhibition in a Murine Model of Gram-Negative Pneumonia-Induced Acute Lung Injury. Shock, 2020, 53, 344-351.	2.1	12
18	An Aptamer for Broad Cancer Targeting and Therapy. Cancers, 2020, 12, 3217.	3.7	13

#	Article	IF	CITATIONS
19	RGEN Editing of RNA and DNA: The Long and Winding Road from Catalytic RNAs to CRISPR to the Clinic. Cell, 2020, 181, 955-960.	28.9	5
20	Therapeutic Aptamers: Evolving to Find their Clinical Niche. Current Medicinal Chemistry, 2020, 27, 4181-4193.	2.4	13
21	Blocking pro-invasive signaling and inflammatory activation in triple-negative breast cancer with nucleic-acid scavengers (NASs) Journal of Clinical Oncology, 2020, 38, e13096-e13096.	1.6	0
22	Preclinical Development of a vWF Aptamer to Limit Thrombosis and Engender Arterial Recanalization of Occluded Vessels. Molecular Therapy, 2019, 27, 1228-1241.	8.2	52
23	Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chemical Biology, 2019, 26, 634-644.e3.	5. 2	60
24	Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Molecular Therapy, 2018, 26, 1020-1031.	8.2	42
25	Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4761-4766.	7.1	108
26	Ferric Chloride-induced Canine Carotid Artery Thrombosis: A Large Animal Model of Vascular Injury. Journal of Visualized Experiments, 2018, , .	0.3	6
27	Toll-like receptor activation as a biomarker in traumatically injured patients. Journal of Surgical Research, 2018, 231, 270-277.	1.6	7
28	Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nature Biotechnology, 2018, 36, 606-613.	17.5	52
29	Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials, 2017, 120, 94-102.	11.4	52
30	Aptamers as Therapeutics. Annual Review of Pharmacology and Toxicology, 2017, 57, 61-79.	9.4	383
31	Differential Induction of Immunogenic Cell Death and Interferon Expression in Cancer Cells by Structured ssRNAs. Molecular Therapy, 2017, 25, 1295-1305.	8.2	10
32	Conformationally selective RNA aptamers allosterically modulate the \hat{l}^2 2-adrenoceptor. Nature Chemical Biology, 2016, 12, 709-716.	8.0	65
33	Translation and Clinical Development of Antithrombotic Aptamers. Nucleic Acid Therapeutics, 2016, 26, 147-155.	3.6	26
34	2′Fluoro Modification Differentially Modulates the Ability of RNAs to Activate Pattern Recognition Receptors. Nucleic Acid Therapeutics, 2016, 26, 173-182.	3.6	45
35	In Vivo Selection Against Human Colorectal Cancer Xenografts Identifies an Aptamer That Targets RNA Helicase Protein DHX9. Molecular Therapy - Nucleic Acids, 2016, 5, e315.	5.1	52
36	Differential effects of toll-like receptor stimulation on mRNA-driven myogenic conversion of human and mouse fibroblasts. Biochemical and Biophysical Research Communications, 2016, 478, 1484-1490.	2.1	7

#	Article	IF	CITATIONS
37	Scavenging nucleic acid debris to combat autoimmunity and infectious disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9728-9733.	7.1	60
38	Aptamers Coming of Age at Twenty-Five. Nucleic Acid Therapeutics, 2016, 26, 119-119.	3.6	5
39	Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. Journal of Allergy and Clinical Immunology, 2016, 137, 1610-1613.e7.	2.9	215
40	From the RNA world to the clinic. Science, 2016, 352, 1417-1420.	12.6	225
41	Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant. Nucleic Acid Therapeutics, 2016, 26, 1-9.	3.6	32
42	Cell-Free DNA Is Elevated after Acute Arterial Injury in Infants. Blood, 2016, 128, 5002-5002.	1.4	0
43	RNA Aptamer Against FXa Synergizes with FXa Catalytic Site Inhibitors to Effectively and Reversibly Anticoagulate Blood in an Ex Vivo Oxygenator Circuit. Blood, 2016, 128, 3823-3823.	1.4	0
44	Aptamer Mediated Inhibition of Protein S. Blood, 2016, 128, 4946-4946.	1.4	0
45	Immobilization of nucleic acid binding polymers as anti-inflammatory agent in autoimmunity. Journal of Controlled Release, 2015, 213, e136.	9.9	7
46	Modulation of the Coagulation Cascade Using Aptamers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2083-2091.	2.4	42
47	RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit ⁺ Cardiac Progenitor Cells. Stem Cells and Development, 2015, 24, 2622-2633.	2.1	7
48	Targeted Disruption of \hat{l}^2 -Arrestin 2-Mediated Signaling Pathways by Aptamer Chimeras Leads to Inhibition of Leukemic Cell Growth. PLoS ONE, 2014, 9, e93441.	2.5	43
49	The Nucleic Acid Scavenger Polyamidoamine Third-Generation Dendrimer Inhibits Fibroblast Activation and Granulation Tissue Contraction. Plastic and Reconstructive Surgery, 2014, 134, 420e-433e.	1.4	15
50	Probing the Coagulation Pathway with Aptamers Identifies Combinations that Synergistically Inhibit Blood Clot Formation. Chemistry and Biology, 2014, 21, 935-944.	6.0	13
51	Laboratory Assessment of Anti-Coagulant Properties of a Von Willebrand Factor Targeted Aptamer. Blood, 2014, 124, 4279-4279.	1.4	0
52	X-Ray Structure of an Anticoagulant RNA Aptamer Bound to Factor Xa. Structural Basis for Its Ability to Disrupt Interactions Between Xa and Va within Prothrombinase. Blood, 2014, 124, 4232-4232.	1.4	0
53	Nucleic Acid Scavenging Polymers Inhibit Extracellular DNA-Mediated Innate Immune Activation without Inhibiting Anti-Viral Responses. PLoS ONE, 2013, 8, e69413.	2.5	20
54	Potent Anticoagulant Aptamer Directed against Factor IXa Blocks Macromolecular Substrate Interaction. Journal of Biological Chemistry, 2012, 287, 12779-12786.	3.4	28

#	Article	IF	CITATIONS
55	Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12938-12943.	7.1	92
56	The Inhibition of Anti-DNA Binding to DNA by Nucleic Acid Binding Polymers. PLoS ONE, 2012, 7, e40862.	2.5	22
57	Nucleic acid-binding polymers as anti-inflammatory agents. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14055-14060.	7.1	122
58	Development of universal antidotes to control aptamer activity. Nature Medicine, 2009, 15, 1224-1228.	30.7	108
59	Effect of PAI-1 Specific RNA Aptamers On Cell Adhesion and Motility Blood, 2009, 114, 2135-2135.	1.4	0
60	Blocking Adhesion of Sickle Erythrocytes to Endothelial P-Selectin Using an RNA Aptamer Blood, 2007, 110, 147-147.	1.4	2
61	Aptamers to Proteins. , 2006, , 131-166.		7
62	Blocking Adhesion of Sickle Erythrocytes to Endothelial $\hat{l}\pm V\hat{l}^2$ 3 Using RNA Aptamer Blood, 2006, 108, 688-688.	1.4	0
63	Blocking Complement-Mediated Hemolysis Using RNA Aptamers That Bind Complement Component C8 Blood, 2005, 106, 186-186.	1.4	0
64	Riboswitches â€" To Kill or Save the Messenger. New England Journal of Medicine, 2004, 351, 2759-2760.	27.0	7
65	Antidote-mediated control of an anticoagulant aptamer in vivo. Nature Biotechnology, 2004, 22, 1423-1428.	17.5	318
66	Blocking Complement-Mediated Hemolysis of PNH Erythrocytes by RNA Aptamers to C8 and C9 Blood, 2004, 104, 2824-2824.	1.4	0
67	Targeted genetic repair: an emerging approach to genetic therapy. Journal of Clinical Investigation, 2003, 112, 310-311.	8.2	12
68	Emerging clinical applications of RNA. Nature, 2002, 418, 252-258.	27.8	304
69	Group II Introns Designed to Insert into Therapeutically Relevant DNA Target Sites in Human Cells. Science, 2000, 289, 452-457.	12.6	203
70	Probing the Interplay between the Two Steps of Group I Intron Splicing: Competition of Exogenous Guanosine with ωGâ€. Biochemistry, 1998, 37, 18056-18063.	2.5	17
71	Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nature Biotechnology, 1997, 15, 41-45.	17.5	95
72	Tagging ribozyme reaction sites to follow trans–splicing in mammalian cells. Nature Medicine, 1996, 2, 643-648.	30.7	125

#	Article	lF	CITATIONS
73	Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nature Medicine, 1996, 2, 1386-1389.	30.7	71
74	Colocalizing ribozymes with substrate rnas to increase their efficacy as gene inhibitors. Applied Biochemistry and Biotechnology, 1995, 54, 57-61.	2.9	17