Ichi N Maruyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843052/publications.pdf

Version: 2024-02-01

218677 161849 3,100 61 26 54 citations h-index g-index papers 63 63 63 2929 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain11Edited by B. Holland. Journal of Molecular Biology, 2001, 311, 1011-1026.	4.2	310
2	A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5729-5733.	7.1	242
3	All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. Journal of Cell Science, 2008, 121, 3207-3217.	2.0	180
4	Investigation of the Dimerization of Proteins from the Epidermal Growth Factor Receptor Family by Single Wavelength Fluorescence Cross-Correlation Spectroscopy. Biophysical Journal, 2007, 93, 684-698.	0.5	160
5	Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers. Cells, 2014, 3, 304-330.	4.1	153
6	Mutants of Escherichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 2976-2979.	7.1	141
7	Lambda foo: a lambda phage vector for the expression of foreign proteins Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8273-8277.	7.1	137
8	On the process of cellular division in Escherichia coli: Nucleotide sequence of the gene for penicillin-binding protein 3. Molecular Genetics and Genomics, 1983, 191, 1-9.	2.4	130
9	cRACE: a simple method for identification of the $5\hat{a}\in^2$ end of mRNAs. Nucleic Acids Research, 1995, 23, 3796-3797.	14.5	123
10	Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The $\hat{a} \in \mathbb{R}$ Rotation Model $\hat{a} \in \mathbb{R}$ Cells, 2017, 6, 13.	4.1	118
11	Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. Journal of Molecular Biology, 1989, 205, 603-613.	4.2	113
12	Isolation of a mutant of Escherichia coli lacking penicillin-sensitive D-alanine carboxypeptidase IA Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 2631-2635.	7.1	98
13	Spatially Resolved Total Internal Reflection Fluorescence Correlation Microscopy Using an Electron Multiplying Charge-Coupled Device Camera. Analytical Chemistry, 2007, 79, 4463-4470.	6.5	94
14	Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2006, 78, 3444-3451.	6.5	83
15	Expression of Multiple UNC-13 Proteins in the <i>Caenorhabditis elegans </i> Nervous System. Molecular Biology of the Cell, 2000, 11, 3441-3452.	2.1	80
16	The <i>Caenorhabditis elegans unc-13</i> gene product is a phospholipid-dependent high-affinity phorbol ester receptor. Biochemical Journal, 1992, 287, 995-999.	3.7	76
17	Activation of transmembrane cellâ€surface receptors via a common mechanism? The "rotation modelâ€s BioEssays, 2015, 37, 959-967.	2.5	64
18	Aversive olfactory learning and associative long-term memory in <i>Caenorhabditis elegans</i> Learning and Memory, 2011, 18, 654-665.	1.3	63

#	Article	IF	CITATIONS
19	A Model for Transmembrane Signalling by the Aspartate Receptor Based on Random-cassette Mutagenesis and Site-directed Disulphide Cross-linking. Journal of Molecular Biology, 1995, 253, 530-546.	4.2	47
20	Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Letters, 2011, 585, 295-299.	2.8	45
21	Brain-derived neurotrophic factor receptor TrkB exists as a preformed dimer in living cells. Journal of Molecular Signaling, 2012, 7, 2.	0.5	40
22	Efficient epitope mapping by bacteriophage λ surface display. Nature Biotechnology, 1997, 15, 74-78.	17.5	37
23	Mapping of the minimal domain encoding a conformational epitope by î» phage surface display: factor VIII inhibitor antibodies from haemophilia A patients. Journal of Immunological Methods, 1999, 224, 89-99.	1.4	31
24	Forward Genetic Screen for <i>Caenorhabditis elegans</i> Mutants with a Shortened Locomotor Healthspan. G3: Genes, Genemes, Genetics, 2019, 9, 2415-2423.	1.8	30
25	Myosin heavy chain gene amplification as a suppressor mutation in Caenorhabditis elegans. Molecular Genetics and Genomics, 1989, 219, 113-118.	2.4	28
26	Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Review of Scientific Instruments, 2007, 78, 053711.	1.3	28
27	Environmental Alkalinity Sensing Mediated by the Transmembrane Guanylyl Cyclase GCY-14 in C.Âelegans. Current Biology, 2013, 23, 1007-1012.	3.9	28
28	Affinity selection of cDNA libraries by î» phage surface display. Gene, 2000, 256, 229-236.	2.2	27
29	Inversion of thermosensing property of the bacterial receptor tar by mutations in the second transmembrane region 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1999, 286, 1275-1284.	4.2	23
30	Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Frontiers in Behavioral Neuroscience, 2017, 11, 80.	2.0	23
31	Cyborg Lectins: Novel Leguminous Lectins with Unique Specificities. Journal of Biochemistry, 2000, 127, 137-142.	1.7	21
32	Structure of a neothramycin-2′-deoxyguanosine adduct. Biochemical and Biophysical Research Communications, 1981, 98, 970-975.	2.1	20
33	Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin-binding protein 3 of Escherichia coli K12. Molecular Microbiology, 1988, 2, 519-525.	2.5	20
34	ASB-1, a germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of germline development in Caenorhabditis elegans. Mechanisms of Development, 2007, 124, 237-251.	1.7	20
35	Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neuroscience Letters, 2013, 555, 248-252.	2.1	20
36	Receptor Guanylyl Cyclases in Sensory Processing. Frontiers in Endocrinology, 2016, 7, 173.	3.5	20

3

#	Article	IF	CITATIONS
37	Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Frontiers in Molecular Neuroscience, 2017, 10, 15.	2.9	19
38	Determination of gene products and coding regions from the murE-murF region of Escherichia coli. Journal of Bacteriology, 1988, 170, 3786-3788.	2.2	17
39	Protein Domain Mapping by \hat{l} » Phage Display: The Minimal Lactose-Binding Domain of Galectin-3. Biochemical and Biophysical Research Communications, 1999, 265, 291-296.	2.1	17
40	The ulcerative colitis marker protein WAFL interacts with accessory proteins in endocytosis. International Journal of Biological Sciences, 2010, 6, 163-171.	6.4	16
41	Active propagation of dendritic electrical signals in C. elegans. Scientific Reports, 2019, 9, 3430.	3.3	16
42	Mechanism of action of neothramycin. I. The effect on macromolecular syntheses Journal of Antibiotics, 1978, 31, 761-768.	2.0	15
43	A Ubiquitin E2 Variant Protein Acts in Axon Termination and Synaptogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2010, 186, 135-145.	2.9	15
44	A selective \hat{l} » phage cloning vector with automatic excision of the insert in a plasmid. Gene, 1992, 120, 135-141.	2.2	12
45	Synaptic exocytosis and nervous system development impaired in Caenorhabditis elegans unc-13 mutants. Neuroscience, 2001, 104, 287-297.	2.3	12
46	Affinity Selection of DNA-Binding Proteins from Yeast Genomic DNA Libraries by Improved Phage Display Vector. Journal of Biochemistry, 2002, 132, 975-982.	1.7	12
47	Mechanism of action of neothramycin. II. Interaction with DNA Journal of Antibiotics, 1979, 32, 928-934.	2.0	10
48	Efficient isolation of cDNA clones encoding rheumatoid arthritis autoantigens by lambda phage surface display. Journal of Biotechnology, 2004, 114, 55-58.	3.8	9
49	Affinity Selection of DNA-Binding Proteins Displayed on Bacteriophage Â. Journal of Biochemistry, 2000, 127, 1057-1063.	1.7	8
50	Alkaline pH sensor molecules. Journal of Neuroscience Research, 2015, 93, 1623-1630.	2.9	8
51	Fluorospectrometric studies on neothramycin and its reaction with DNA. Journal of Antibiotics, 1981, 34, 427-435.	2.0	7
52	Identification of ADAMTS13 peptide sequences binding to von Willebrand factor. Biochemical and Biophysical Research Communications, 2010, 391, 783-788.	2.1	7
53	Decision making in <i>C. elegans</i> chemotaxis to alkaline pH. Communicative and Integrative Biology, 2013, 6, e26633.	1.4	7
54	A synthetic translation-terminator gene. Gene Analysis Techniques, 1989, 6, 57-61.	1.0	5

#	Article	IF	CITATION
55	A G-protein α subunit, GOA-1, plays a role in <i>C. elegans</i> li>avoidance behavior of strongly alkaline pH. Communicative and Integrative Biology, 2013, 6, e26668.	1.4	5
56	Mutation in histone deacetylase HDA-3 leads to shortened locomotor healthspan in Caenorhabditis elegans. Aging, 2020, 12, 23525-23547.	3.1	4
57	A bacteriophage T7-based expression vector, pBT7, with color selection for the recombinant. Gene, 1993, 131, 79-82.	2.2	3
58	Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the <i>Escherichia coli </i> aspartate receptor Tar and its complex with aspartate. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1219-1223.	0.8	3
59	Activation of Preformed EGFR Dimers by Binding of Single EGF Molecules: Negative Cooperativity. Biophysical Journal, 2018, 114, 463a.	0.5	0
60	Identification of ADAMTS13 Epitopes Required for Binding to von Willebrand Factor Using Lambda Phage Surface Display Blood, 2007, 110, 2707-2707.	1.4	0
61	Plate Assay to Determine Caenorhabditis elegans Response to Water Soluble and Volatile Chemicals. Bio-protocol, 2018, 8, e2740.	0.4	0