Lang Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4843/publications.pdf

Version: 2024-02-01

101543 88630 5,793 70 36 70 citations h-index g-index papers 72 72 72 5757 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy. Bioactive Materials, 2023, 19, 237-250.	15.6	33
2	Nanomaterial-mediated ablation therapy for cancer stem cells. Matter, 2022, 5, 1367-1390.	10.0	12
3	Engineered extracellular vesicles and their mimics in cardiovascular diseases. Journal of Controlled Release, 2022, 347, 27-43.	9.9	21
4	Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells. Biosensors and Bioelectronics, 2022, 213, 114425.	10.1	15
5	Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19. Immune Network, 2022, 22, .	3.6	4
6	Microfluidics-Assisted Fluorescence Mapping of DNA Phosphorothioation. Analytical Chemistry, 2022, 94, 10479-10486.	6. 5	1
7	Extracellular vesicleâ€coated nanoparticles. View, 2021, 2, 20200187.	5 . 3	27
8	A platelet-mimicking theranostic platform for cancer interstitial brachytherapy. Theranostics, 2021, 11, 7589-7599.	10.0	32
9	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	38.1	257
10	Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVIDâ€19 Cytokine Storm. Advanced Materials, 2021, 33, e2100012.	21.0	43
11	Supramolecular Polymerizationâ€Induced Nanoassemblies for Selfâ€Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor. Angewandte Chemie - International Edition, 2021, 60, 17570-17578.	13.8	150
12	A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials, 2021, 275, 120822.	11.4	57
13	Engineered Cell Membraneâ€Derived Nanoparticles in Immune Modulation. Advanced Science, 2021, 8, e2102330.	11.2	31
14	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 26320-26326.	13.8	55
15	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 26524-26530.	2.0	2
16	Gelatinase-sensitive nanoparticles loaded with photosensitizer and STAT3 inhibitor for cancer photothermal therapy and immunotherapy. Journal of Nanobiotechnology, 2021, 19, 379.	9.1	20
17	A novel "on–off–on―fluorescence assay for the discriminative detection of Cu(<scp>ii</scp>) and <scp>I-</scp> cysteine based on red-emissive Si-CDs and cellular imaging applications. Journal of Materials Chemistry B, 2020, 8, 919-927.	5.8	34
18	Activating Macrophageâ€Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 2020, 32, e2004853.	21.0	146

#	Article	IF	CITATIONS
19	Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27141-27147.	7.1	173
20	Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy. BIO Integration, 2020, 1 , .	1.3	32
21	Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Advanced Materials, 2020, 32, e2002054.	21.0	464
22	Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 15320-15330.	13.7	170
23	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	10.3	53
24	One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Advances, 2020, 10, 10067-10075.	3.6	11
25	Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials, 2020, 244, 119979.	11.4	40
26	Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano, 2020, 14, 2569-2574.	14.6	103
27	Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 145-160.	13.7	21
28	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11, 4909.	12.8	199
29	Biomimetic Immunomagnetic Nanoparticles with Minimal Nonspecific Biomolecule Adsorption for Enhanced Isolation of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28732-28739.	8.0	49
30	An Acoustic Droplet-Induced Enzyme Responsive Platform for the Capture and On-Demand Release of Single Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41118-41126.	8.0	30
31	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
32	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	14.9	137
33	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	14.6	253
34	A valveâ€based microfluidic device for onâ€chip single cell treatments. Electrophoresis, 2019, 40, 961-968.	2.4	18
35	A Biomimetic Nanodecoy Traps Zika Virus To Prevent Viral Infection and Fetal Microcephaly Development. Nano Letters, 2019, 19, 2215-2222.	9.1	69
36	Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology, 2018, 29, 134004.	2.6	91

#	Article	IF	Citations
37	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie, 2018, 130, 998-1003.	2.0	18
38	A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 262, 555-561.	7.8	60
39	Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin- $1\hat{l}^2$ secretion. Nature Communications, 2018, 9, 106.	12.8	159
40	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie - International Edition, 2018, 57, 986-991.	13.8	132
41	Cancer Theranostics: Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870265.	14.9	4
42	Myeloidâ€Derived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	14.9	140
43	Gelatin Nanoparticle-Coated Silicon Beads for Density-Selective Capture and Release of Heterogeneous Circulating Tumor Cells with High Purity. Theranostics, 2018, 8, 1624-1635.	10.0	66
44	Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads. Nano Futures, 2018, 2, 025004.	2.2	21
45	Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1803531.	14.9	154
46	Early Cancer Diagnosis: Platelet–Leukocyte Hybrid Membrane oated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870241.	14.9	1
47	Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology, 2018, 29, 434001.	2.6	20
48	Biocompatible fabrication of cell-laden calcium alginate microbeads using microfluidic double flow-focusing device. Sensors and Actuators A: Physical, 2018, 279, 313-320.	4.1	20
49	Advances in cell membrane-camouflaged nano-carrier for photothermal therapy. Chinese Optics, 2018, 11, 392-400.	0.6	1
50	Antitumor Plateletâ€Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 2017, 27, 1604774.	14.9	152
51	Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano, 2017, 11, 3496-3505.	14.6	377
52	Theranostics: Antitumor Plateletâ€Mimicking Magnetic Nanoparticles (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
53	Janus droplet parallel arrangements using a simple Y-channel flow-focusing microfluidic device. Chemical Physics Letters, 2017, 673, 93-98.	2.6	9
54	Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. Journal of Materials Chemistry B, 2017, 5, 226-235.	5.8	34

#	Article	IF	CITATIONS
55	Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles. Chemical Physics Letters, 2017, 668, 35-41.	2.6	15
56	Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Applied Materials & Interfaces, 2017, 9, 2159-2168.	8.0	195
57	Effective cancer targeting and imaging using macrophage membrane amouflaged upconversion nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 521-530.	4.0	83
58	Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO ₂ @Gelâ€Microbeadâ€Based Size Difference Amplification. Advanced Healthcare Materials, 2016, 5, 1554-1559.	7.6	44
59	Ultraviolet-assisted microfluidic generation of ferroelectric composite particles. Biomicrofluidics, 2016, 10, 024106.	2.4	2
60	Three-dimensional valve-based controllable PDMS nozzle for dynamic modulation of droplet generation. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	11
61	Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860.	4.0	25
62	Photocatalytic Degradation of Cell Membrane Coatings for Controlled Drug Release. Advanced Healthcare Materials, 2016, 5, 1420-1427.	7.6	49
63	Cancer Cell Membraneâ€Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	21.0	420
64	Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 2016, 27, 085106.	2.6	99
65	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	10.0	353
66	A Concentration-Controllable Microfluidic Droplet Mixer for Mercury Ion Detection. Micromachines, 2015, 6, 915-925.	2.9	3
67	One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances, 2015, 5, .	1.3	24
68	Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Applied Physics Letters, 2015, 106, .	3.3	41
69	A microfluidic electrostatic separator based on pre-charged droplets. Sensors and Actuators B: Chemical, 2015, 210, 328-335.	7.8	24
70	Capture and Release of Cancer Cells by Combining On-Chip Purification and Off-Chip Enzymatic Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24001-24007.	8.0	55