Susanne H Sokolow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4842956/publications.pdf

Version: 2024-02-01

172457 197818 2,754 52 29 49 citations h-index g-index papers 59 59 59 3310 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three reasons why expanded use of natural enemy solutions may offer sustainable control of human infections. People and Nature, 2022, 4, 32-43.	3.7	3
2	Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa. Remote Sensing, 2022, 14, 1345.	4.0	11
3	Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine, 2022, 47, 101386.	7.1	22
4	How to identify win–win interventions that benefit human health and conservation. Nature Sustainability, 2021, 4, 298-304.	23.7	28
5	Agricultural Innovations to Reduce the Health Impacts of Dams. Sustainability, 2021, 13, 1869.	3.2	4
6	Land use impacts on parasitic infection: a cross-sectional epidemiological study on the role of irrigated agriculture in schistosome infection in a dammed landscape. Infectious Diseases of Poverty, 2021, 10, 35.	3.7	7
7	Exposure, hazard, and vulnerability and their contribution to Schistosoma haematobium re-infection in northern Senegal. Lancet Planetary Health, The, 2021, 5, S10.	11.4	1
8	Identification of Snails and Schistosoma of Medical Importance via Convolutional Neural Networks: A Proof-of-Concept Application for Human Schistosomiasis. Frontiers in Public Health, 2021, 9, 642895.	2.7	6
9	Schistosome infection in Senegal is associated with different spatial extents of risk and ecological drivers for Schistosoma haematobium and S. mansoni. PLoS Neglected Tropical Diseases, 2021, 15, e0009712.	3.0	11
10	Addressing Climate Change and Its Effects on Human Health: A Call to Action for Medical Schools. Academic Medicine, 2021, 96, 324-328.	1.6	51
11	Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Current Biology, 2021, 31, R1342-R1361.	3.9	40
12	Exposure, hazard, and vulnerability all contribute to Schistosoma haematobium re-infection in northern Senegal. PLoS Neglected Tropical Diseases, 2021, 15, e0009806.	3.0	4
13	Effects of agrochemical pollution on schistosomiasis transmission: a systematic review and modelling analysis. Lancet Planetary Health, The, 2020, 4, e280-e291.	11.4	20
14	Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28515-28524.	7.1	38
15	Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200966.	2.6	3
16	Concomitant Immunity and Worm Senescence May Drive Schistosomiasis Epidemiological Patterns: An Eco-Evolutionary Perspective. Frontiers in Immunology, 2020, 11, 160.	4.8	13
17	Aquatic macrophytes and macroinvertebrate predators affect densities of snail hosts and local production of schistosome cercariae that cause human schistosomiasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008417.	3.0	23
18	Visualization of schistosomiasis snail habitats using light unmanned aerial vehicles. Geospatial Health, 2020, 15 , .	0.8	2

#	Article	IF	CITATIONS
19	Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180344.	4.0	83
20	Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nature Sustainability, 2019, 2, 611-620.	23.7	32
21	Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180342.	4.0	102
22	Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2019, 2, 445-456.	23.7	362
23	Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23182-23191.	7.1	65
24	Gene drives for schistosomiasis transmission control. PLoS Neglected Tropical Diseases, 2019, 13, e0007833.	3.0	23
25	Potential Biological Control of Schistosomiasis by Fishes in the Lower Senegal River Basin. American Journal of Tropical Medicine and Hygiene, 2019, 100, 117-126.	1.4	14
26	Unavoidable Risks: Local Perspectives on Water Contact Behavior and Implications for Schistosomiasis Control in an Agricultural Region of Northern Senegal. American Journal of Tropical Medicine and Hygiene, 2019, 101, 837-847.	1.4	14
27	Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nature Communications, 2018, 9, 837.	12.8	71
28	To Reduce the Global Burden of Human Schistosomiasis, Use â€~Old Fashioned' Snail Control. Trends in Parasitology, 2018, 34, 23-40.	3.3	79
29	Estimating the elimination feasibility in the 'end game' of control efforts for parasites subjected to regular mass drug administration: Methods and their application to schistosomiasis. PLoS Neglected Tropical Diseases, 2018, 12, e0006794.	3.0	3
30	A novel framework to account for ecological drivers in the control and elimination of environmentally transmitted disease: a modelling study. Lancet, The, 2017, 389, S5.	13.7	0
31	Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160127.	4.0	91
32	Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160128.	4.0	78
33	Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis. Scientific Reports, 2017, 7, 489.	3.3	58
34	Heterogeneity in schistosomiasis transmission dynamics. Journal of Theoretical Biology, 2017, 432, 87-99.	1.7	40
35	The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal. Advances in Water Resources, 2017, 108, 406-415.	3.8	45
36	Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best. PLoS Neglected Tropical Diseases, 2016, 10, e0004794.	3.0	161

3

#	Article	IF	CITATIONS
37	A Theoretical Analysis of the Geography of Schistosomiasis in Burkina Faso Highlights the Roles of Human Mobility and Water Resources Development in Disease Transmission. PLoS Neglected Tropical Diseases, 2015, 9, e0004127.	3.0	34
38	Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control. Journal of Experimental Biology, 2015, 218, 3962-3967.	1.7	42
39	Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9650-9655.	7.1	160
40	The Prawn Macrobrachium vollenhovenii in the Senegal River Basin: Towards Sustainable Restocking of All-Male Populations for Biological Control of Schistosomiasis. PLoS Neglected Tropical Diseases, 2014, 8, e3060.	3.0	47
41	Sapronosis: a distinctive type of infectious agent. Trends in Parasitology, 2014, 30, 386-393.	3.3	35
42	Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): Implications for control of schistosomiasis. Acta Tropica, 2014, 132, 64-74.	2.0	77
43	Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 2010, 13, 311-320.	6.4	68
44	Ecology of avian influenza viruses in a changing world. Annals of the New York Academy of Sciences, 2010, 1195, 113-128.	3.8	106
45	Predictive Power of Air Travel and Socio-Economic Data for Early Pandemic Spread. PLoS ONE, 2010, 5, e12763.	2.5	65
46	Editor's choice: Disease dynamics in marine metapopulations: modelling infectious diseases on coral reefs. Journal of Applied Ecology, 2009, 46, 621-631.	4.0	42
47	Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Diseases of Aquatic Organisms, 2009, 87, 5-18.	1.0	107
48	Causal inference in disease ecology: investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 2008, 6, 420-429.	4.0	261
49	Spatial Epidemiology of Caribbean Yellow Band Syndrome in Montastrea spp. Coral in the Eastern Yucatan, Mexico. Hydrobiologia, 2005, 548, 33-40.	2.0	18
50	Epidemiologic evaluation of diarrhea in dogs in an animal shelter. American Journal of Veterinary Research, 2005, 66, 1018-1024.	0.6	52
51	Schistosomiasis and climate change. BMJ, The, O, , m4324.	6.0	16
52	Environmental Persistence of the World's Most Burdensome Infectious and Parasitic Diseases. Frontiers in Public Health, 0, 10 , .	2.7	9