List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4842910/publications.pdf Version: 2024-02-01

ΚΛΡΙΛΙΗΠΤΤ

#	Article	IF	CITATIONS
1	Prolonged atrazine exposure beginning <i>in utero</i> and adult uterine morphology in mice. Journal of Developmental Origins of Health and Disease, 2022, 13, 39-48.	1.4	5
2	Development of an embryo transfer model to study uterine contributions to pregnancy. Reproduction and Fertility, 2022, 3, 10-18.	1.8	1
3	Inhibin Inactivation in Female Mice Leads to Elevated FSH Levels, Ovarian Overstimulation, and Pregnancy Loss. Endocrinology, 2022, 163, .	2.8	5
4	Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Scientific Reports, 2021, 11, 278.	3.3	84
5	DNA repair in primordial follicle oocytes following cisplatin treatment. Journal of Assisted Reproduction and Genetics, 2021, 38, 1405-1417.	2.5	9
6	Evaluation of mitochondria in mouse oocytes following cisplatin exposure. Journal of Ovarian Research, 2021, 14, 65.	3.0	8
7	Assessment of Ovarian Function in PhaseÂIII (Neo)Adjuvant Breast Cancer Clinical Trials: A Systematic Evaluation. Journal of the National Cancer Institute, 2021, , .	6.3	11
8	Evaluating the impacts of emerging cancer therapies on ovarian function. Current Opinion in Endocrine and Metabolic Research, 2021, 18, 15-28.	1.4	6
9	HENMT1 is involved in the maintenance of normal female fertility in the mouse. Molecular Human Reproduction, 2021, 27, .	2.8	2
10	Do cancer therapies damage the uterus and compromise fertility?. Human Reproduction Update, 2020, 26, 161-173.	10.8	48
11	Clinical summary guide: reproduction in women with previous abdominopelvic radiotherapy or total body irradiation. Human Reproduction Open, 2020, 2020, hoaa045.	5.4	14
12	Comparison of methods for quantifying primordial follicles in the mouse ovary. Journal of Ovarian Research, 2020, 13, 121.	3.0	21
13	Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11513-11522.	7.1	72
14	The PARP inhibitor, olaparib, depletes the ovarian reserve in mice: implications for fertility preservation. Human Reproduction, 2020, 35, 1864-1874.	0.9	36
15	The Inflammasome Contributes to Depletion of the Ovarian Reserve During Aging in Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 628473.	3.7	39
16	NMN does not protect the ovarian reserve from cancer treatments. Reproduction, 2020, 159, 105-113.	2.6	6
17	Moderate episodic prenatal alcohol does not impact female offspring fertility in rats. Reproduction, 2020, 159, 615-626.	2.6	4
18	Accurate Follicle Enumeration in Adult Mouse Ovaries. Journal of Visualized Experiments, 2020, , .	0.3	6

#	Article	IF	CITATIONS
19	Smchd1 is a maternal effect gene required for genomic imprinting. ELife, 2020, 9, .	6.0	24
20	Oocytes from stem cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2019, 55, 14-22.	2.8	12
21	Vincristine Chemotherapy Induces Atresia of Growing Ovarian Follicles in Mice. Toxicological Sciences, 2019, 169, 43-53.	3.1	17
22	Cisplatin- and cyclophosphamide-induced primordial follicle depletion is caused by direct damage to ocytes. Molecular Human Reproduction, 2019, 25, 433-444.	2.8	77
23	Do BRCA1 and BRCA2 gene mutation carriers have a reduced ovarian reserve? Protocol for a prospective observational study. BMJ Open, 2019, 9, e033810.	1.9	4
24	Evaluation of mitochondria in oocytes following \hat{I}^3 -irradiation. Scientific Reports, 2019, 9, 19941.	3.3	11
25	The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Human Reproduction Update, 2018, 24, 119-134.	10.8	113
26	Dacarbazine depletes the ovarian reserve in mice and depletion is enhanced with age. Scientific Reports, 2018, 8, 6516.	3.3	16
27	Examination of the ovotoxicity of 5-fluorouracil in mice. Journal of Assisted Reproduction and Genetics, 2018, 35, 1053-1060.	2.5	15
28	Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nature Communications, 2018, 9, 3970.	12.8	192
29	Loss of PUMA protects the ovarian reserve during DNA-damaging chemotherapy and preserves fertility. Cell Death and Disease, 2018, 9, 618.	6.3	89
30	Maternal low protein diet programmes low ovarian reserve in offspring. Reproduction, 2018, 156, 299–311.	2.6	20
31	The capacity of oocytes for DNA repair. Cellular and Molecular Life Sciences, 2018, 75, 2777-2792.	5.4	65
32	Multidose 5-Fluorouracil is Highly Toxic to Growing Ovarian Follicles in Mice. Toxicological Sciences, 2018, 166, 97-107.	3.1	18
33	The ovarian reserve is depleted during puberty in a hormonally driven process dependent on the pro-apoptotic protein BMF. Cell Death and Disease, 2017, 8, e2971-e2971.	6.3	29
34	Taking control of the female fertile lifespan: a key role for Bcl-2 family proteins. Reproduction, Fertility and Development, 2016, 28, 864.	0.4	5
35	BCL2-modifying factor promotes germ cell loss during murine oogenesis. Reproduction, 2016, 151, 553-562.	2.6	13
36	How Is the Number of Primordial Follicles in the Ovarian Reserve Established?1. Biology of Reproduction, 2015, 93, 111.	2.7	141

#	Article	IF	CITATIONS
37	Ovarian reserve screening: a scientific and ethical analysis. Human Reproduction, 2015, 30, 1000-1002.	0.9	3
38	What is the $\hat{a} \in \hat{\infty}$ ovarian reserve $\hat{a} \in \hat{e}$. Fertility and Sterility, 2015, 103, 628-630.	1.0	52
39	The role of BH3-only proteins in apoptosis within the ovary. Reproduction, 2015, 149, R81-R89.	2.6	59
40	Loss of the Proapoptotic BH3-Only Protein BCL-2 Modifying Factor Prolongs the Fertile Life Span in Female Mice1. Biology of Reproduction, 2014, 90, 77.	2.7	33
41	PUMA regulates germ cell loss and primordial follicle endowment in mice. Reproduction, 2014, 148, 211-219.	2.6	49
42	Dual roles for Id4 in the regulation of estrogen signaling in the mammary gland and ovary. Development (Cambridge), 2014, 141, 3159-3164.	2.5	30
43	Molecular correlates of platinum response in human highâ€grade serous ovarian cancer patientâ€derived xenografts. Molecular Oncology, 2014, 8, 656-668.	4.6	117
44	Damage Control in the Female Germline: Protecting Primordial Follicles. , 2013, , 39-47.		2
45	Paladin is an antiphosphatase that regulates neural crest cell formation and migration. Developmental Biology, 2012, 371, 180-190.	2.0	24
46	DNA Damage-Induced Primordial Follicle Oocyte Apoptosis and Loss of Fertility Require TAp63-Mediated Induction of Puma and Noxa. Molecular Cell, 2012, 48, 343-352.	9.7	214
47	Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nature Medicine, 2012, 18, 1170-1172.	30.7	81
48	Bim Mediates Germ Cell Death During Ovarian Development Biology of Reproduction, 2012, 87, 516-516.	2.7	0
49	The Environmental Toxicant 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Disturbs the Establishment and Maintenance of Cell Polarity in Preimplantation Rat Embryos1. Biology of Reproduction, 2010, 82, 914-920.	2.7	8
50	Comparative analysis of the metaphase II spindle of human oocytes through polarized light and high-performance confocal microscopy. Fertility and Sterility, 2010, 93, 2056-2064.	1.0	56
51	The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts morphogenesis of the rat pre-implantation embryo. BMC Developmental Biology, 2008, 8, 1.	2.1	68
52	An oocentric view of folliculogenesis and embryogenesis. Reproductive BioMedicine Online, 2007, 14, 758-764.	2.4	124
53	Ferrichrome utilization in a mesorhizobial population: microevolution of a threeâ€locus system. Environmental Microbiology, 2007, 9, 2923-2932.	3.8	8
54	Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell and Tissue Research, 2006, 326, 809-822.	2.9	37

#	Article	IF	CITATIONS
55	KIT/KIT Ligand in Mammalian Oogenesis and Folliculogenesis: Roles in Rabbit and Murine Ovarian Follicle Activation and Oocyte Growth1. Biology of Reproduction, 2006, 75, 421-433.	2.7	104
56	Clinical applications and limitations of current ovarian stem cell research: a review. Journal of Experimental & Clinical Assisted Reproduction, 2006, 3, 6.	0.4	19
57	89. The effect of kit ligand on follicle growth initiation in cultured rabbit and mouse ovaries. Reproduction, Fertility and Development, 2003, 15, 89.	0.4	Ο