
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4840994/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global biodiversity patterns of marine forests of brown macroalgae. Global Ecology and Biogeography, 2022, 31, 636-648.	2.7	22
2	Global Patterns of Coastal Cephalopod Diversity Under Climate Change. Frontiers in Marine Science, 2022, 8, .	1.2	14
3	Joint analysis of species and genetic variation to quantify the role of dispersal and environmental constraints in community turnover. Ecography, 2022, 2022, .	2.1	9
4	Dispersal abilities favor commensalism in animal-plant interactions under climate change. Science of the Total Environment, 2022, 835, 155157.	3.9	12
5	Exploring the Effects of Geopolitical Shifts on Global Wildlife Trade. BioScience, 2022, 72, 560-572.	2.2	7
6	Impacts of the SARS-CoV-2 pandemic on the global demand for exotic pets: An expert elicitation approach. Global Ecology and Conservation, 2022, 35, e02067.	1.0	5
7	Disentangling food-web environment relationships: A review with guidelines. Basic and Applied Ecology, 2022, 61, 102-115.	1.2	9
8	Biogeography of bird and mammal trophic structures. Ecography, 2022, 2022, .	2.1	7
9	Strategy games to improve environmental policymaking. Nature Sustainability, 2022, 5, 464-471.	11.5	14
10	Potential for invasion of traded birds under climate and land over change. Global Change Biology, 2022, 28, 5654-5666.	4.2	11
11	Discriminating climate, landâ€cover and random effects on species range dynamics. Global Change Biology, 2021, 27, 1309-1317.	4.2	21
12	The evolution of critical thermal limits of life on Earth. Nature Communications, 2021, 12, 1198.	5.8	149
13	Improvements in reports of species redistribution under climate change are required. Science Advances, 2021, 7, .	4.7	56
14	Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in climate extreme events. Diversity and Distributions, 2021, 27, 2262-2276.	1.9	21
15	Fineâ€ŧuning biodiversity assessments: A framework to pair eDNA metabarcoding and morphological approaches. Methods in Ecology and Evolution, 2021, 12, 2397-2409.	2.2	20
16	Response of an Afro-Palearctic bird migrant to glaciation cycles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
17	Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Functional Ecology, 2020, 34, 631-645.	1.7	29
18	Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. Journal of Animal Ecology, 2020, 89, 2451-2460.	1.3	26

#	Article	IF	CITATIONS
19	Water deprivation drives intraspecific variability in lizard heat tolerance. Basic and Applied Ecology, 2020, 48, 37-51.	1.2	6
20	Optimizing biodiversity informatics to improve information flow, data quality, and utility for science and society. Frontiers of Biogeography, 2020, 12, .	0.8	22
21	Ecological and epidemiological models are both useful for SARS-CoV-2. Nature Ecology and Evolution, 2020, 4, 1153-1154.	3.4	13
22	The Global Forest Transition as a Human Affair. One Earth, 2020, 2, 417-428.	3.6	38
23	Trends in legal and illegal trade of wild birds: a global assessment based on expert knowledge. Biodiversity and Conservation, 2019, 28, 3343-3369.	1.2	62
24	The marine fish food web is globally connected. Nature Ecology and Evolution, 2019, 3, 1153-1161.	3.4	76
25	Spatial trophic cascades in communities connected by dispersal and foraging. Ecology, 2019, 100, e02820.	1.5	18
26	Ecography's flip to a payâ€ŧoâ€publish model. Ecography, 2019, 42, 1456-1457.	2.1	1
27	Metaâ€analyzing the likely crossâ€species responses to climate change. Ecology and Evolution, 2019, 9, 11136-11144.	0.8	10
28	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	2.4	290
29	Predicting range shifts of Asian elephants under global change. Diversity and Distributions, 2019, 25, 822-838.	1.9	62
30	Climate shapes mammal community trophic structures and humans simplify them. Nature Communications, 2019, 10, 5197.	5.8	29
31	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 2019, 433, 263-275.	1.4	16
32	Standards for distribution models in biodiversity assessments. Science Advances, 2019, 5, eaat4858.	4.7	605
33	Intraspecific variation in lizard heat tolerance alters estimates of climate impact. Journal of Animal Ecology, 2019, 88, 247-257.	1.3	56
34	Anthropogenic range contractions bias species climate change forecasts. Nature Climate Change, 2018, 8, 252-256.	8.1	98
35	Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landscape Ecology, 2018, 33, 659-673.	1.9	34
36	Massâ€independent maximal metabolic rate predicts geographic range size of placental mammals. Functional Ecology, 2018, 32, 1194-1202.	1.7	8

#	Article	IF	CITATIONS
37	Modelling landscape constraints on farmland bird species range shifts under climate change. Science of the Total Environment, 2018, 625, 1596-1605.	3.9	22
38	GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 2018, 5, 180022.	2.4	164
39	Multiple interactions networks: towards more realistic descriptions of the web of life. Oikos, 2018, 127, 5-22.	1.2	60
40	Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 2018, 24, e55-e66.	4.2	140
41	How complex should models be? Comparing correlative and mechanistic range dynamics models. Global Change Biology, 2018, 24, 1357-1370.	4.2	71
42	Climate change impacts on the distribution of coastal lobsters. Marine Biology, 2018, 165, 1.	0.7	15
43	Interplay between productivity and regional species pool determines community assembly in aquatic microcosms. Aquatic Sciences, 2018, 80, 1.	0.6	5
44	The effect of multiple biotic interaction types on species persistence. Ecology, 2018, 99, 2327-2337.	1.5	29
45	Divergent trophic responses to biogeographic and environmental gradients. Oikos, 2017, 126, 101-110.	1.2	10
46	Anthropogenic impacts weaken Bergmann's rule. Ecography, 2017, 40, 683-684.	2.1	22
47	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	2.7	31
48	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
49	A roadmap for island biology: 50 fundamental questions after 50Âyears of <i>The Theory of Island Biogeography</i> . Journal of Biogeography, 2017, 44, 963-983.	1.4	167
50	Resource tracking within and across continents in long-distance bird migrants. Science Advances, 2017, 3, e1601360.	4.7	199
51	Networks of global bird invasion altered by regional trade ban. Science Advances, 2017, 3, e1700783.	4.7	91
52	Invasive American bullfrogs and African Clawed Frogs in South America: High Suitability of Occurrence in Biodiversity Hotspots. Zoological Studies, 2017, 56, e28.	0.3	2
53	Temperature Range Shifts for Three European Tree Species over the Last 10,000 Years. Frontiers in Plant Science, 2016, 7, 1581.	1.7	28
54	Costâ€effective monitoring of biological invasions under global change: a modelâ€based framework. Journal of Applied Ecology, 2016, 53, 1317-1329.	1.9	35

#	Article	IF	CITATIONS
55	The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Scientific Reports, 2016, 6, 25546.	1.6	74
56	SimiVal, a multi-criteria map comparison tool for land-change model projections. Environmental Modelling and Software, 2016, 82, 229-240.	1.9	13
57	sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 2016, 39, 368-375.	2.1	579
58	Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 2016, 25, 65-74.	2.7	19
59	Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climatic Change, 2016, 138, 603-615.	1.7	54
60	Did British breeding birds move north in the late 20th century?. Climate Change Responses, 2016, 3, .	2.6	15
61	Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods in Ecology and Evolution, 2016, 7, 853-866.	2.2	61
62	Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography, 2016, 39, 402-408.	2.1	32
63	A theory for species co-occurrence in interaction networks. Theoretical Ecology, 2016, 9, 39-48.	0.4	83
64	The effects of model and data complexity on predictions from species distributions models. Ecological Modelling, 2016, 326, 4-12.	1.2	61
65	Effects of climate, species interactions, and dispersal on decadal colonization and extinction rates of Iberian tree species. Ecological Modelling, 2015, 309-310, 118-127.	1.2	21
66	A biogeographical regionalization of <scp>A</scp> ngolan mammals. Mammal Review, 2015, 45, 103-116.	2.2	20
67	Evaluating the combined effects of climate and landâ€use change on tree species distributions. Journal of Applied Ecology, 2015, 52, 902-912.	1.9	73
68	Inferring biotic interactions from proxies. Trends in Ecology and Evolution, 2015, 30, 347-356.	4.2	267
69	Species' intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography, 2015, 24, 849-858.	2.7	70
70	Representing taxonomic, phylogenetic and functional diversity: new challenges for <scp>M</scp> editerranean marineâ€protected areas. Diversity and Distributions, 2015, 21, 175-187.	1.9	57
71	The geographic scaling of biotic interactions. Ecography, 2014, 37, 406-415.	2.1	252
72	Integrating multiple lines of evidence into historical biogeography hypothesis testing: a <i>Bison bison</i> case study. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132782.	1.2	41

5

MIGUEL BASTOS ARAúJO

#	Article	IF	CITATIONS
73	Matching species traits to projected threats and opportunities from climate change. Journal of Biogeography, 2014, 41, 724-735.	1.4	72
74	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	6.0	519
75	Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology, 2014, 51, 703-713.	1.9	115
76	Globalizing Conservation Efforts to Save Species and Enhance Food Production. BioScience, 2014, 64, 539-545.	2.2	33
77	Predictors of contraction and expansion of area of occupancy for British birds. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140744.	1.2	38
78	The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 2014, 17, 1351-1364.	3.0	802
79	Uncertainty associated with survey design in Species Distribution Models. Diversity and Distributions, 2014, 20, 1258-1269.	1.9	91
80	Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 219-227.	1.1	39
81	Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Climate Change, 2013, 3, 899-903.	8.1	96
82	Heat freezes niche evolution. Ecology Letters, 2013, 16, 1206-1219.	3.0	708
83	Chasing a moving target: projecting climate changeâ€induced shifts in nonâ€equilibrial tree species distributions. Journal of Ecology, 2013, 101, 441-453.	1.9	96
84	Risk assessment for Iberian birds under global change. Biological Conservation, 2013, 168, 192-200.	1.9	32
85	Using Life Strategies to Explore the Vulnerability of Ecosystem Services to Invasion by Alien Plants. Ecosystems, 2013, 16, 678-693.	1.6	22
86	An Update of Wallace's Zoogeographic Regions of the World. Science, 2013, 339, 74-78.	6.0	1,037
87	Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography, 2013, 22, 344-350.	2.7	105
88	Climate envelope models suggest spatioâ€ŧemporal coâ€occurrence of refugia of <scp>A</scp> frican birds and mammals. Global Ecology and Biogeography, 2013, 22, 351-363.	2.7	45
89	Does local habitat fragmentation affect largeâ€scale distributions? The case of a specialist grassland bird. Diversity and Distributions, 2013, 19, 423-432.	1.9	53
90	Modelling distribution in <scp>E</scp> uropean stream macroinvertebrates under future climates. Global Change Biology, 2013, 19, 752-762.	4.2	159

#	Article	IF	CITATIONS
91	Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 2013, 36, 956-964.	2.1	111
92	Communityâ€level vs speciesâ€specific approaches to model selection. Ecography, 2013, 36, 1291-1298.	2.1	46
93	Linking habitats for multiple species. Environmental Modelling and Software, 2013, 40, 336-339.	1.9	30
94	Response to Comment on "An Update of Wallace's Zoogeographic Regions of the World― Science, 2013, 341, 343-343.	6.0	15
95	Conservation Planning with Uncertain Climate Change Projections. PLoS ONE, 2013, 8, e53315.	1.1	127
96	Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity and Conservation, 2012, 21, 2913-2926.	1.2	70
97	Habitat stability affects dispersal and the ability to track climate change. Biology Letters, 2012, 8, 639-643.	1.0	57
98	Uses and misuses of bioclimatic envelope modeling. Ecology, 2012, 93, 1527-1539.	1.5	816
99	Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Clobal Change Biology, 2012, 18, 1253-1269.	4.2	136
100	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	4.2	182
101	Patterns of coexistence of two species of freshwater turtles are affected by spatial scale. Basic and Applied Ecology, 2012, 13, 371-379.	1.2	6
102	Potential Impacts of Climate Change on Ecosystem Services in Europe: The Case of Pest Control by Vertebrates. BioScience, 2012, 62, 658-666.	2.2	61
103	Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE, 2012, 7, e34420.	1.1	52
104	commentary: Hot research on roasted lizards: warming, evolution and extinction in climate change studies. Frontiers of Biogeography, 2012, 2, .	0.8	0
105	Spanish cuts: Reform bureaucratic culture. Nature, 2012, 487, 38-39.	13.7	1
106	Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages. Global Change Biology, 2012, 18, 2995-3003.	4.2	98
107	Managing the longâ€ŧerm persistence of a rare cockatoo under climate change. Journal of Applied Ecology, 2012, 49, 785-794.	1.9	22
108	Global patterns in the shape of species geographical ranges reveal range determinants. Journal of Biogeography, 2012, 39, 760-771.	1.4	54

#	Article	IF	CITATIONS
109	demoniche – an Râ€package for simulating spatiallyâ€explicit population dynamics. Ecography, 2012, 35, 577-580.	2.1	28
110	Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecology and Biogeography, 2012, 21, 1106-1113.	2.7	65
111	Linking like with like: optimising connectivity between environmentally-similar habitats. Landscape Ecology, 2012, 27, 291-301.	1.9	66
112	Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Natureza A Conservacao, 2012, 10, 152-159.	2.5	93
113	Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 2011, 480, 516-519.	13.7	504
114	A probability-based approach to match species with reserves when data are at different resolutions. Biological Conservation, 2011, 144, 811-820.	1.9	32
115	Misleading results from conventional gap analysis – Messages from the warming north. Biological Conservation, 2011, 144, 2450-2458.	1.9	36
116	The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds. PLoS ONE, 2011, 6, e29373.	1.1	46
117	Climate change threatens European conservation areas. Ecology Letters, 2011, 14, 484-492.	3.0	660
118	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	4.2	478
119	Rethinking species' ability to cope with rapid climate change. Global Change Biology, 2011, 17, 2987-2990.	4.2	177
120	Using species coâ€occurrence networks to assess the impacts of climate change. Ecography, 2011, 34, 897-908.	2.1	160
121	Consequences of climate change on the tree of life in Europe. Nature, 2011, 470, 531-534.	13.7	460
122	Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling, 2011, 222, 3346-3354.	1.2	199
123	Niches and Geographic Distributions. , 2011, , .		245
124	Phylogenetic signals in the climatic niches of the world's amphibians. Ecography, 2010, 33, 242-250.	2.1	48
125	The concept of potential natural vegetation: an epitaph?. Journal of Vegetation Science, 2010, 21, 1172-1178.	1.1	153
126	CLIMATE PREDICTORS OF LATE QUATERNARY EXTINCTIONS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	1.1	77

#	Article	IF	CITATIONS
127	Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography, 2010, 33, 1038-1048.	2.1	182
128	Do communityâ€ l evel models describe community variation effectively?. Journal of Biogeography, 2010, 37, 1842-1850.	1.4	30
129	Ensemble forecasting shifts in climatically suitable areas for <i>Tropidacris cristata</i> (Orthoptera:) Tj ETQq1 1	0.784314 1.4	rg_{51}^{BT} /Over \circ
130	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	6.0	1,570
131	Planejamento para a Conservação em um Clima em Mudança. Natureza A Conservacao, 2010, 08, 78-80.	2.5	3
132	Reopening the climate envelope reveals macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E45-6; author reply E41-3.	3.3	70
133	Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 2009, 5, 723-725.	1.0	124
134	Biogeography of Iberian freshwater fishes revisited: the roles of historical versus contemporary constraints. Journal of Biogeography, 2009, 36, 2096-2110.	1.4	67
135	BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 2009, 32, 369-373.	2.1	1,796
136	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
137	Individualistic vs community modelling of species distributions under climate change. Ecography, 2009, 32, 55-65.	2.1	105
138	Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 2009, 32, 897-906.	2.1	494
139	An ecosystem modelâ€based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Global Ecology and Biogeography, 2009, 18, 304-313.	2.7	52
140	Systematic Conservation Planning Comes of Age. Conservation Biology, 2009, 23, 1332-1333.	2.4	1
141	Dynamics of range margins for metapopulations under climate change. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1415-1420.	1.2	265
142	Testing the effectiveness of discrete and continuous environmental diversity as a surrogate for species diversity. Ecological Indicators, 2009, 9, 138-149.	2.6	25
143	Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 2008, 17, 623-641.	1.2	48
144	Exposure of European biodiversity to changes in human-induced pressures. Environmental Science and Policy, 2008, 11, 38-45.	2.4	40

MIGUEL BASTOS ARAúJO

#	Article	IF	CITATIONS
145	Measurements of area and the (island) species–area relationship: new directions for an old pattern. Oikos, 2008, 117, 1555-1559.	1.2	51
146	Scale effects and human impact on the elevational species richness gradients. Nature, 2008, 453, 216-219.	13.7	452
147	Mitigation, Adaptation, and the Threat to Biodiversity. Conservation Biology, 2008, 22, 1352-1355.	2.4	41
148	Incorporating the effects of changes in vegetation functioning and CO ₂ on water availability in plant habitat models. Biology Letters, 2008, 4, 556-559.	1.0	41
149	Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 2008, 4, 560-563.	1.0	552
150	The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biology Letters, 2008, 4, 568-572.	1.0	309
151	Climate Change in Mediterranean Mountains during the 21st Century. Ambio, 2008, 37, 280-285.	2.8	129
152	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	1.1	966
153	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 2008, 31, 8-15.	2.1	345
154	Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biology, 2008, 6, e79.	2.6	250
155	Shifting Global Invasive Potential of European Plants with Climate Change. PLoS ONE, 2008, 3, e2441.	1.1	69
156	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.3	10
157	Correction for Willis <i>et al.</i> , How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 2367-2367.	1.8	0
158	Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 2007, 22, 42-47.	4.2	2,517
159	Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 2007, 17, 420-428.	3.6	540
160	Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth?. Biological Conservation, 2007, 138, 493-505.	1.9	98
161	Forecasting the Effects of Global Warming on Biodiversity. BioScience, 2007, 57, 227-236.	2.2	483
162	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	2.1	2,522

#	Article	IF	CITATIONS
163	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	1.5	47
164	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
165	How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 175-187.	1.8	208
166	The island immaturity - speciation pulse model of island evolution: an alternative to the "diversity begets diversity―model. Ecography, 2007, 30, 321-327.	2.1	97
167	data for five taxa. Global Ecology and Biogeography, 2007, 16, 76-89.	2.7	198
168	The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 2007, 16, 743-753.	2.7	953
169	Conserving biodiversity in a world of conflicts. Journal of Biogeography, 2007, 34, 199-200.	1.4	24
170	The Effectiveness of Iberian Protected Areas in Conserving Terrestrial Biodiversity. Conservation Biology, 2007, 21, 1423-1432.	2.4	167
171	Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 2007, 5, 131-138.	1.9	630
172	Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 2006, 30, 751-777.	1.4	787
173	How Does Climate Change Affect Biodiversity?. Science, 2006, 313, 1396-1397.	6.0	476
174	Species richness, area and climate correlates. Global Ecology and Biogeography, 2006, 15, 452-460.	2.7	48
175	Consequences of spatial autocorrelation for niche-based models. Journal of Applied Ecology, 2006, 43, 433-444.	1.9	274
176	Model-based uncertainty in species range prediction. Journal of Biogeography, 2006, 33, 1704-1711.	1.4	804
177	Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 2006, 33, 1712-1728.	1.4	744
178	Five (or so) challenges for species distribution modelling. Journal of Biogeography, 2006, 33, 1677-1688.	1.4	1,413
179	Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 2006, 12, 49-60.	1.9	248
180	How well do Important Bird Areas represent species and minimize conservation conflict in the tropical Andes?. Diversity and Distributions, 2006, 12, 205-214.	1.9	43

#	Article	IF	CITATIONS
181	A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment, 2006, 114, 57-68.	2.5	412
182	data for five taxa. Global Ecology and Biogeography, 2006, .	2.7	6
183	Planning for Climate Change: Identifying Minimumâ€Dispersal Corridors for the Cape Proteaceae. Conservation Biology, 2005, 19, 1063-1074.	2.4	261
184	Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography, 2005, 14, 17-30.	2.7	218
185	Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 2005, 14, 347-357.	2.7	448
186	Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 2005, 14, 529-538.	2.7	420
187	Conservation Biogeography: assessment and prospect. Diversity and Distributions, 2005, 11, 3-23.	1.9	919
188	Validation of species-climate impact models under climate change. Global Change Biology, 2005, 11, 1504-1513.	4.2	1,209
189	Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8245-8250.	3.3	1,913
190	Equilibrium of species' distributions with climate. Ecography, 2005, 28, 693-695.	2.1	524
191	Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 2005, 310, 1333-1337.	6.0	1,355
192	Representing species in reserves from patterns of assemblage diversity. Journal of Biogeography, 2004, 31, 1037-1050.	1.4	50
193	An evaluation of methods for modelling species distributions. Journal of Biogeography, 2004, 31, 1555-1568.	1.4	679
194	Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, 2004, 10, 1618-1626.	4.2	606
195	Effects of restricting environmental range of data to project current and future species distributions. Ecography, 2004, 27, 165-172.	2.1	479
196	Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 2004, 27, 437-448.	2.1	665
197	Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 2004, 41, 252-262.	1.9	175
198	Uncertainty in predictions of extinction risk. Nature, 2004, 430, 34-34.	13.7	216

MIGUEL BASTOS ARAúJO

#	Article	IF	CITATIONS
199	Dangers of crying wolf over risk of extinctions. Nature, 2004, 428, 799-799.	13.7	39
200	Do we need land over data to model species distributions in Europe?. Journal of Biogeography, 2004, 31, 353-361.	1.4	353
201	Matching species with reserves – uncertainties from using data at different resolutions. Biological Conservation, 2004, 118, 533-538.	1.9	70
202	Predicting species diversity with ED: the quest for evidence. Ecography, 2003, 26, 380-383.	2.1	33
203	The coincidence of people and biodiversity in Europe. Global Ecology and Biogeography, 2003, 12, 5-12.	2.7	213
204	Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 2003, 14, 669-680.	1.1	251
205	Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. , 2003, 14, 669.		47
206	Dynamics of extinction and the selection of nature reserves. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1971-1980.	1.2	134
207	Biodiversity Hotspots and Zones of Ecological Transition. Conservation Biology, 2002, 16, 1662-1663.	2.4	78
208	Title is missing!. Environmental Modeling and Assessment, 2002, 7, 139-151.	1.2	70
209	A sequential approach to minimise threats within selected conservation areas. Biodiversity and Conservation, 2002, 11, 1011-1024.	1.2	46
210	The Bias of Complementarity Hotspots toward Marginal Populations. Conservation Biology, 2001, 15, 1710-1720.	2.4	81
211	Factors affecting corn bunting Miliaria calandra abundance in a Portuguese agricultural landscape. Agriculture, Ecosystems and Environment, 2000, 77, 219-226.	2.5	21
212	Selecting areas for species persistence using occurrence data. Biological Conservation, 2000, 96, 331-345.	1.9	340
213	Distribution patterns of biodiversity and the design of a representative reserve network in Portugal. BIODIVERSITY RESEARCH. Diversity and Distributions, 1999, 5, 151-163.	1.9	74
214	Global Patterns of Small Pelagic Fishes' Diversity: Present and Future. , 0, , .		0