Maohui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4840980/publications.pdf

Version: 2024-02-01

186265 155660 3,077 59 28 55 citations h-index g-index papers 62 62 62 1707 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Individual difference in thermal comfort: A literature review. Building and Environment, 2018, 138, 181-193.	6.9	377
2	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	6.9	279
3	Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Building and Environment, 2015, 88, 46-54.	6.9	142
4	Human metabolic rate and thermal comfort in buildings: The problem and challenge. Building and Environment, 2018, 131, 44-52.	6.9	133
5	The underlying linkage between personal control and thermal comfort: Psychological or physical effects?. Energy and Buildings, 2016, 111, 56-63.	6.7	130
6	Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 2014, 72, 411-418.	6.7	120
7	The dynamics of thermal comfort expectations: The problem, challenge and impication. Building and Environment, 2016, 95, 322-329.	6.9	119
8	Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy and Buildings, 2020, 210, 109776.	6.7	109
9	Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 2018, 143, 206-216.	6.9	101
10	Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate. Energy and Buildings, 2016, 118, 152-159.	6.7	99
11	Indoor climate and thermal physiological adaptation: Evidences from migrants with different cold indoor exposures. Building and Environment, 2016, 98, 30-38.	6.9	92
12	Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 2020, 226, 110392.	6.7	87
13	Indoor climate experience, migration, and thermal comfort expectation in buildings. Building and Environment, 2018, 141, 262-272.	6.9	85
14	Influence of short-term thermal experience on thermal comfort evaluations: A climate chamber experiment. Building and Environment, 2017, 114, 246-256.	6.9	78
15	High-density thermal sensitivity maps of the human body. Building and Environment, 2020, 167, 106435.	6.9	73
16	Too cold or too warm? A winter thermal comfort study in different climate zones in China. Energy and Buildings, 2016, 133, 469-477.	6.7	70
17	Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Building and Environment, 2015, 91, 5-14.	6.9	65
18	The uncertainty of subjective thermal comfort measurement. Energy and Buildings, 2018, 181, 38-49.	6.7	65

#	Article	IF	Citations
19	A model to compare convective and radiant heating systems for intermittent space heating. Applied Energy, 2018, 215, 211-226.	10.1	63
20	Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy and Buildings, 2020, 211, 109795.	6.7	62
21	Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application. Building and Environment, 2019, 161, 106231.	6.9	59
22	Revisiting individual and group differences in thermal comfort based on ASHRAE database. Energy and Buildings, 2020, 219, 110017.	6.7	59
23	Thermal comfort under radiant asymmetries of floor cooling system in 2â€h and 8â€h exposure durations. Energy and Buildings, 2019, 188-189, 98-110.	6.7	55
24	A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber. Energy and Buildings, 2018, 177, 402-412.	6.7	53
25	Evaluating the comfort of thermally dynamic wearable devices. Building and Environment, 2020, 167, 106443.	6.9	41
26	Indoor human thermal adaptation: dynamic processes and weighting factors. Indoor Air, 2017, 27, 273-281.	4.3	40
27	Chinese older people's subjective and physiological responses to moderate cold and warm temperature steps. Building and Environment, 2019, 149, 526-536.	6.9	37
28	Ceiling fan air speeds around desks and office partitions. Building and Environment, 2017, 124, 412-440.	6.9	35
29	Energy and comfort performance of occupant-centric air conditioning strategy in office buildings with personal comfort devices. Building Simulation, 2022, 15, 899-911.	5.6	31
30	Thermal comfort performance and energy-efficiency evaluation of six personal heating/cooling devices. Building and Environment, 2022, 217, 109069.	6.9	28
31	Exploring the dynamic process of human thermal adaptation: A study in teaching building. Energy and Buildings, 2016, 127, 425-432.	6.7	23
32	Thermal comfort in semi-outdoor spaces within an office building in Shenzhen: A case study in a hot climate region of China. Indoor and Built Environment, 2018, 27, 1431-1444.	2.8	23
33	The time-scale of thermal comfort adaptation in heated and unheated buildings. Building and Environment, 2019, 151, 175-186.	6.9	22
34	Measurement of airflow pattern induced by ceiling fan with quad-view colour sequence particle streak velocimetry. Building and Environment, 2019, 152, 122-134.	6.9	21
35	Typical winter clothing characteristics and thermal insulation of ensembles for older people in China. Building and Environment, 2020, 182, 107127.	6.9	20
36	Ceiling-fan-integrated air conditioning: Airflow and temperature characteristics of a sidewall-supply jet interacting with a ceiling fan. Building and Environment, 2020, 171, 106660.	6.9	20

#	Article	IF	Citations
37	Predicted percentage dissatisfied with vertical temperature gradient. Energy and Buildings, 2020, 220, 110085.	6.7	18
38	Room zonal location and activity intensity recognition model for residential occupant using passive-infrared sensors and machine learning. Building Simulation, 2022, 15, 1133-1144.	5.6	16
39	Radiant asymmetric thermal comfort evaluation for floor cooling system – A field study in office building. Energy and Buildings, 2022, 260, 111917.	6.7	15
40	Physiological and subjective thermal responses to heat exposure in northern and southern Chinese people. Building Simulation, 2021, 14, 1619-1631.	5.6	14
41	Application of dynamic airflows in buildings and its effects on perceived thermal comfort. Indoor and Built Environment, 2018, 27, 1162-1174.	2.8	13
42	Determining Building Natural Ventilation Potential via IoT-Based Air Quality Sensors. Frontiers in Environmental Science, 2021, 9, .	3.3	10
43	Overall and thermal comfort under different temperature, noise, and vibration exposures. Indoor Air, 2022, 32, .	4.3	10
44	Development of data-driven thermal sensation prediction model using quality-controlled databases. Building Simulation, 2022, 15, 2111-2125.	5.6	10
45	Experimenting and Modeling Thermal Performance of Ground Heat Exchanger Under Freezing Soil Conditions. Sustainability, $2019, 11, 5738$.	3.2	9
46	Detailed measured air speed distribution in four commercial buildings with ceiling fans. Building and Environment, 2021, 200, 107979.	6.9	9
47	Airflow pattern induced by ceiling fan under different rotation speeds and blowing directions. Indoor and Built Environment, 2020, 29, 1425-1440.	2.8	8
48	Validation of the Stolwijk and Tanabe Human Thermoregulation Models for Predicting Local Skin Temperatures of Older People under Thermal Transient Conditions. Energies, 2020, 13, 6524.	3.1	8
49	Data-driven thermal preference prediction model with embodied air-conditioning sensors and historical usage behaviors. Building and Environment, 2022, 220, 109269.	6.9	8
50	The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment. Springer Theses, 2020, , .	0.1	4
51	Quantitative Investigation of Body Part Selection for Data-Driven Personal Overall Thermal Preference Prediction. Buildings, 2022, 12, 170.	3.1	3
52	Micro-Scale Thermal Sensitivity Mappings of Human Body. Environmental Science and Engineering, 2020, , 411-419.	0.2	2
53	Ceiling-fan-integrated air-conditioning: thermal comfort evaluations. Buildings and Cities, 2021, 2, .	2.3	2
54	Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study. Sustainability, 2020, 12, 2591.	3.2	1

Маониі Luo

#	Article	IF	CITATIONS
55	Approach to Choose Proper Passive Design Strategies for Residential Buildings. Lecture Notes in Electrical Engineering, 2014, , 635-643.	0.4	1
56	Adaptive Heating Balance Comfort Model. Springer Theses, 2020, , 131-144.	0.1	0
57	Personal Control and Its Phycological Effects on Thermal Adaptation. Springer Theses, 2020, , 111-130.	0.1	O
58	The Timescale of Thermal Comfort Adaptation in Heated and Unheated Buildings. Springer Theses, 2020, , 59-80.	0.1	0
59	Evaluation of Radiant Heating and CoolingÂTerminals Based on Structural Thermal Resistance. Environmental Science and Engineering, 2020, , 1367-1377.	0.2	0