Wang JiaQi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4838516/publications.pdf

Version: 2024-02-01

		361413	182427
58	2,766 citations	20	51
papers	citations	h-index	g-index
50	58	E O	2220
58	36	58	3329
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin <i>in vivo</i> : A comparative study. Journal of Innovative Optical Health Sciences, 2022, 15, .	1.0	5
2	Deep-Brain Three-Photon Imaging Enabled by Aggregation-Induced Emission Luminogens with Near-Infrared-III Excitation. ACS Nano, 2022, 16, 6712-6724.	14.6	40
3	Selfâ€phaseâ€modulated femtosecond laser source at 1603 nm and its application to deepâ€brain <scp>3â€photon</scp> microscopy in vivo. Journal of Biophotonics, 2021, 14, e202000349.	2.3	1
4	Elliptically-Polarized Soliton Self-Frequency Shift in Isotropic Optical Fiber. Journal of Lightwave Technology, 2021, 39, 1334-1339.	4.6	5
5	Numerical Analysis of a Pyro-breaker Utilized in Superconducting Fusion Facility. , 2021, , .		1
6	Deepâ€skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. Journal of Biophotonics, 2021, 14, e202100076.	2.3	0
7	Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo. Biomedical Optics Express, 2021, 12, 6474.	2.9	2
8	In Vivo Three-Photon Microscopy of Mouse Brain Excited at the 2200 nm Window. ACS Photonics, 2021, 8, 2898-2903.	6.6	7
9	Measurement of twoâ€photon properties of indocyanine green in water and human plasma excited at the 1700â€nm window. Journal of Biophotonics, 2020, 13, e202000299.	2.3	5
10	Binary Organic Nanoparticles with Bright Aggregation-Induced Emission for Three-Photon Brain Vascular Imaging. Chemistry of Materials, 2020, 32, 6437-6443.	6.7	41
11	3â€photon microscopy of myelin in mouse digital skin excited at the 1700â€nm window. Journal of Biophotonics, 2020, 13, e202000321.	2.3	4
12	Photophysical Properties of Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Nanocrystals Emitting at 820 nm. Journal of Physical Chemistry C, 2020, 124, 7994-7999.	3.1	8
13	Manipulating Soliton Polarization in Soliton Self-Frequency Shift and Its Application to 3-Photon Microscopy in Vivo. Journal of Lightwave Technology, 2020, 38, 2450-2455.	4.6	13
14	In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window. Biomedical Optics Express, 2020, 11, 2738.	2.9	12
15	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology, 2019, 30, 415202.	2.6	30
16	Coherent Raman Scattering Unravelling Mechanisms Underlying Skull Optical Clearing for Through-Skull Brain Imaging. Analytical Chemistry, 2019, 91, 9371-9375.	6.5	29
17	In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. Nano Letters, 2019, 19, 5260-5265.	9.1	68
18	3â€photon fluorescence imaging of sulforhodamine Bâ€labeled elastic fibers in the mouse skin in vivo. Journal of Biophotonics, 2019, 12, e201900185.	2.3	6

#	Article	IF	Citations
19	Nonlinear Fewâ€Layer MXeneâ€Assisted Allâ€Optical Wavelength Conversion at Telecommunication Band. Advanced Optical Materials, 2019, 7, 1801777.	7.3	86
20	Airâ€core fiber or photonicâ€crystal rod, which is more suitable for energetic femtosecond pulse generation and threeâ€photon microscopy at the 1700â€nm window?. Journal of Biophotonics, 2019, 12, e201900069.	2.3	2
21	Deepâ€brain threeâ€photon microscopy excited at 1600 nm with silicone oil immersion. Journal of Biophotonics, 2019, 12, e201800423.	2.3	5
22	Visualizing astrocytes in the deep mouse brain in vivo. Journal of Biophotonics, 2019, 12, e201800420.	2.3	21
23	Visualizing the "sandwich―structure of osteocytes in their native environment deep in bone in vivo. Journal of Biophotonics, 2019, 12, e201800360.	2.3	7
24	Refractive index and pulse broadening characterization using oil immersion and its influence on threeâ€photon microscopy excited at the 1700â€nm window. Journal of Biophotonics, 2019, 12, e201800263.	2.3	3
25	High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo. Optics Express, 2019, 27, 15309.	3.4	4
26	Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700  nm window. Optics Letters, 2019, 44, 4432.	3.3	32
27	Nonlinear Fewâ€Layer Antimoneneâ€Based Allâ€Optical Signal Processing: Ultrafast Optical Switching and Highâ€Speed Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1701287.	7.3	97
28	Ex and in vivo characterization of the wavelengthâ€dependent 3â€photon action crossâ€sections of red fluorescent proteins covering the 1700â€nm window. Journal of Biophotonics, 2018, 11, e201700351.	2.3	12
29	Comparison of higherâ€order multiphoton signal generation and collection at the 1700â€nm window based on transmittance measurement of objective lenses. Journal of Biophotonics, 2018, 11, e201700121.	2.3	19
30	Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	1
31	Selfâ€referenced axial chromatic dispersion measurement in multiphoton microscopy through 2â€color thirdâ€harmonic generation imaging. Journal of Biophotonics, 2018, 11, e201800071.	2.3	4
32	Wavelength Separation Tunable 2-Color Soliton Generation and Its Application to 2-Color Fluorescence Multiphoton Microscopy. Journal of Lightwave Technology, 2018, 36, 3249-3253.	4.6	3
33	Polarization multiplexing in large-mode-area waveguides and its application to signal enhancement in multiphoton microscopy. Applied Physics Letters, 2017, 110, .	3.3	10
34	Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation. Advanced Optical Materials, 2017, 5, 1700026.	7.3	125
35	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. ACS Photonics, 2017, 4, 1466-1476.	6.6	173
36	Optical Modulation: Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation (Advanced Optical Materials 9/2017). Advanced Optical Materials, 2017, 5, .	7.3	1

#	Article	IF	CITATIONS
37	Synchronization Maintenance of Synchronized Time-Lens Source in the Presence of Repetition Rate Drift of the Mode-Locked Laser for Coherent Raman Scattering Microscopy. IEEE Journal of Quantum Electronics, 2017, 53, 1-5.	1.9	0
38	Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	3
39	Contributed Review: A new synchronized source solution for coherent Raman scattering microscopy. Review of Scientific Instruments, 2016, 87, 071501.	1.3	4
40	Comparison of Signal Detection of GaAsP and GaAs PMTs for Multiphoton Microscopy at the 1700-nm window. IEEE Photonics Journal, 2016, 8, 1-6.	2.0	10
41	Fluorescence Signal Generation Optimization by Optimal Filling of the High Numerical Aperture Objective Lens for High-Order Deep-Tissue Multiphoton Fluorescence Microscopy. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	119
42	Soliton self-frequency shift and its application to multiphoton microscopy. , 2015, , .		0
43	Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy. Journal of Biomedical Optics, 2015, 20, 055003.	2.6	2
44	Timing jitter in synchronized time-lens source for coherent Raman scattering imaging. Optics Express, 2015, 23, 18786.	3.4	5
45	Optimal compression in synchronised timeâ€lens source for CRS imaging. Electronics Letters, 2014, 50, 148-149.	1.0	6
46	Measurements of multiphoton action cross sections for multiphoton microscopy. Biomedical Optics Express, 2014, 5, 3427.	2.9	132
47	Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 50-60.	2.9	70
48	Nonquadratic Spectral Phase Aberration With Quadratic Temporal Phase Modulation in an Actively Modulated Ultrafast Laser System. IEEE Journal of Quantum Electronics, 2014, 50, 639-644.	1.9	3
49	Experimental Demonstration of Soliton Cascade in Higher-Order-Mode Fibers. IEEE Photonics Technology Letters, 2014, 26, 301-304.	2.5	0
50	In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 2013, 7, 205-209.	31.4	1,225
51	Timeâ€lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. Journal of Biophotonics, 2013, 6, 815-820.	2.3	18
52	Higher-order-mode fiber optimized for energetic soliton propagation. Optics Letters, 2012, 37, 3459.	3.3	27
53	Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy. Biomedical Optics Express, 2012, 3, 1972.	2.9	67
54	Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging. Applied Physics Letters, 2012, 100, 071106.	3.3	4

#	ARTICLE	IF	CITATION
55	Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Applied Physics Letters, 2011, 99, .	3.3	82
56	Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source. Optics Letters, 2011, 36, 942.	3.3	39
57	Fiber-delivered picosecond source for coherent Raman scattering imaging. Optics Letters, 2011, 36, 4233.	3.3	20
58	Synchronized time-lens source for coherent Raman scattering microscopy. Optics Express, 2010, 18, 24019.	3.4	48