Hanadi F Sleiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837331/publications.pdf

Version: 2024-02-01

31976 36028 10,312 150 53 97 citations h-index g-index papers 173 173 173 8144 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Using transient equilibria (TREQ) to measure the thermodynamics of slowly assembling supramolecular systems. Science Advances, 2022, 8, eabm8455.	10.3	3
2	DNA Sequence and Length Dictate the Assembly of Nucleic Acid Block Copolymers. Journal of the American Chemical Society, 2022, 144, 12272-12279.	13.7	20
3	DNA Nanostructures: Current Challenges and Opportunities for Cellular Delivery. ACS Nano, 2021, 15, 3631-3645.	14.6	92
4	A dissipative pathway for the structural evolution of DNA fibres. Nature Chemistry, 2021, 13, 843-849.	13.6	60
5	Thermosetting supramolecular polymerization of compartmentalized DNA fibers with stereo sequence and length control. CheM, 2021, 7, 2395-2414.	11.7	16
6	Design and enhanced gene silencing activity of spherical 2′-fluoroarabinose nucleic acids (FANA-SNAs). Chemical Science, 2021, 12, 2993-3003.	7.4	15
7	Tuning DNA Supramolecular Polymers by the Addition of Small, Functionalized Nucleobase Mimics. Journal of the American Chemical Society, 2021, 143, 19824-19833.	13.7	10
8	Asymmetric patterning drives the folding of a tripodal DNA nanotweezer. Chemical Science, 2021, 13, 74-80.	7.4	8
9	Target Selfâ€Enhanced Selectivity in Metal‧pecific DNAzymes. Angewandte Chemie, 2020, 132, 3601-3605.	2.0	10
10	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie - International Edition, 2020, 59, 4091-4098.	13.8	7
11	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie - International Edition, 2020, 59, 3573-3577.	13.8	43
12	A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nature Materials, 2020, 19, 1012-1018.	27.5	62
13	Selection of a metal ligand modified DNAzyme for detecting Ni2+. Biosensors and Bioelectronics, 2020, 165, 112285.	10.1	34
14	Single-molecule methods in structural DNA nanotechnology. Chemical Society Reviews, 2020, 49, 4220-4233.	38.1	31
15	Molecular Printing with DNA Nanotechnology. CheM, 2020, 6, 1560-1574.	11.7	23
16	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie, 2020, 132, 4120-4127.	2.0	2
17	Amplified Selfâ€Immolative Release of Small Molecules by Spatial Isolation of Reactive Groups on DNAâ€Minimal Architectures. Angewandte Chemie, 2020, 132, 13000-13008.	2.0	1
18	Amplified Selfâ€Immolative Release of Small Molecules by Spatial Isolation of Reactive Groups on DNAâ€Minimal Architectures. Angewandte Chemie - International Edition, 2020, 59, 12900-12908.	13.8	32

#	Article	IF	CITATIONS
19	The assemble, grow and lift-off (AGLO) strategy to construct complex gold nanostructures with pre-designed morphologies. Chemical Science, 2020, 11, 4911-4921.	7.4	17
20	Detailed cellular assessment of albumin-bound oligonucleotides: Increased stability and lower non-specific cell uptake. Journal of Controlled Release, 2020, 324, 34-46.	9.9	16
21	Sequence-Defined DNA Amphiphiles for Drug Delivery: Synthesis and Self-Assembly. Methods in Molecular Biology, 2020, 2063, 87-100.	0.9	1
22	I Am Delighted to Present This <i>Bioconjugate Chemistry</i> Special Issue Entitled "Interfacing Biology with Materials using DNA Assemblies― Bioconjugate Chemistry, 2019, 30, 1835-1835.	3.6	0
23	Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques. Accounts of Chemical Research, 2019, 52, 3199-3210.	15.6	12
24	Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS Applied Materials & Interfaces, 2019, 11, 13912-13920.	8.0	27
25	Remote control of charge transport and chiral induction along a DNA-metallohelicate. Nanoscale, 2019, 11, 11879-11884.	5.6	8
26	Bottomâ€Up Characterization and Selfâ€Assembly of Electrogenerated Chemiluminescence Active Ruthenium Nanospheres. ChemElectroChem, 2019, 6, 3499-3506.	3.4	1
27	Design Strategy to Access siRNA-Encapsulating DNA "Nanosuitcases―That Can Conditionally Release Their Cargo. Methods in Molecular Biology, 2019, 1974, 69-81.	0.9	0
28	Uptake and Fate of Fluorescently Labeled DNA Nanostructures in Cellular Environments: A Cautionary Tale. ACS Central Science, 2019, 5, 882-891.	11.3	134
29	Charting a course for chemistry. Nature Chemistry, 2019, 11, 286-294.	13.6	18
30	7. Toward the Assembly of Dynamic and Complex DNA Nanostructures. , 2019, , 183-208.		0
31	Spatial Presentation of Cholesterol Units on a DNA Cube as a Determinant of Membrane Protein-Mimicking Functions. Journal of the American Chemical Society, 2019, 141, 1100-1108.	13.7	98
32	"Printing―DNA Strand Patterns on Small Molecules with Control of Valency, Directionality, and Sequence. Angewandte Chemie, 2019, 131, 3074-3079.	2.0	3
33	"Printing―DNA Strand Patterns on Small Molecules with Control of Valency, Directionality, and Sequence. Angewandte Chemie - International Edition, 2019, 58, 3042-3047.	13.8	14
34	DNA Nanostructures at the Interface with Biology. CheM, 2018, 4, 495-521.	11.7	161
35	DNA Nanotubes with Hydrophobic Environments: Toward New Platforms for Guest Encapsulation and Cellular Delivery. Advanced Healthcare Materials, 2018, 7, 1701049.	7.6	21
36	Encapsulation of Gold Nanoparticles into DNA Minimal Cages for 3Dâ€Anisotropic Functionalization and Assembly. Small, 2018, 14, 1702660.	10.0	26

#	Article	IF	CITATIONS
37	DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns. Nature Chemistry, 2018, 10, 184-192.	13.6	80
38	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	48.7	1,268
39	Kinetics of Strand Displacement and Hybridization on Wireframe DNA Nanostructures: Dissecting the Roles of Size, Morphology, and Rigidity. ACS Nano, 2018, 12, 12836-12846.	14.6	13
40	Templated synthesis of spherical RNA nanoparticles with gene silencing activity. Chemical Communications, 2018, 54, 11296-11299.	4.1	12
41	Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami. Nanoscale, 2018, 10, 13994-13999.	5.6	8
42	Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality. Journal of the American Chemical Society, 2018, 140, 9518-9530.	13.7	60
43	Recent advances in DNA nanotechnology. Current Opinion in Chemical Biology, 2018, 46, 63-70.	6.1	112
44	Modular Strategy To Expand the Chemical Diversity of DNA and Sequence-Controlled Polymers. Journal of Organic Chemistry, 2018, 83, 9774-9786.	3.2	21
45	Mapping the energy landscapes of supramolecular assembly by thermal hysteresis. Nature Communications, 2018, 9, 3152.	12.8	24
46	Cuvetteâ€Based Electrogenerated Chemiluminescence Detection System for the Assessment of Polymerizable Ruthenium Luminophores. ChemElectroChem, 2017, 4, 1736-1743.	3.4	12
47	Development of DNA Nanostructures for High-Affinity Binding to Human Serum Albumin. Journal of the American Chemical Society, 2017, 139, 7355-7362.	13.7	127
48	Efficient and Rapid Mechanochemical Assembly of Platinum(II) Squares for Guanine Quadruplex Targeting. Journal of the American Chemical Society, 2017, 139, 16913-16922.	13.7	48
49	Long-Range Ordering of Blunt-Ended DNA Tiles on Supported Lipid Bilayers. Journal of the American Chemical Society, 2017, 139, 12027-12034.	13.7	67
50	Stoichiometry and Dispersity of DNA Nanostructures Using Photobleaching Pair-Correlation Analysis. Bioconjugate Chemistry, 2017, 28, 2340-2349.	3.6	5
51	Precision spherical nucleic acids for delivery of anticancer drugs. Chemical Science, 2017, 8, 6218-6229.	7.4	84
52	Correction: Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. Nanoscale, 2016, 8, 10453-10453.	5.6	0
53	A highly versatile platform based on geometrically well-defined 3D DNA nanostructures for selective recognition and positioning of multiplex targets. Nanoscale, 2016, 8, 18291-18295.	5.6	16
54	Optimized DNA "Nanosuitcases―for Encapsulation and Conditional Release of siRNA. Journal of the American Chemical Society, 2016, 138, 14030-14038.	13.7	182

#	Article	lF	CITATIONS
55	DNA micelles as nanoreactors: efficient DNA functionalization with hydrophobic organic molecules. Chemical Communications, 2016, 52, 10914-10917.	4.1	38
56	Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands. ACS Nano, 2016, 10, 6542-6551.	14.6	21
57	"DNA–Teflon―sequence-controlled polymers. Polymer Chemistry, 2016, 7, 4998-5003.	3.9	37
58	Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages. Journal of the American Chemical Society, 2016, 138, 4416-4425.	13.7	92
59	Reprogramming the assembly of unmodified DNA with a small molecule. Nature Chemistry, 2016, 8, 368-376.	13.6	116
60	Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells. Biochimie, 2016, 121, 287-297.	2.6	16
61	Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nature Chemistry, 2016, 8, 162-170.	13.6	205
62	Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.		0
63	Z-Profiling of CFTR Oligomerization State Distributions via Single Molecule Step Photobleaching Analysis in Epithelial Cells. Biophysical Journal, 2015, 108, 322a.	0.5	0
64	Modulation of Charge Transport Across Double-Stranded DNA by the Site-Specific Incorporation of Copper Bis-Phenanthroline Complexes. Langmuir, 2015, 31, 1850-1854.	3.5	7
65	Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level. Nature Chemistry, 2015, 7, 295-300.	13.6	51
66	Cyclometalated Iridium(III) Imidazole Phenanthroline Complexes as Luminescent and Electrochemiluminescent G-Quadruplex DNA Binders. Inorganic Chemistry, 2015, 54, 6958-6967.	4.0	42
67	Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds. Nature Communications, 2015, 6, 7065.	12.8	38
68	Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions. ACS Nano, 2015, 9, 11898-11908.	14.6	43
69	Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. Nanoscale, 2015, 7, 20625-20634.	5.6	22
70	DNA-Based Metallosupramolecular Materials. RSC Smart Materials, 2015, , 32-69.	0.1	2
71	Titelbild: An Efficient and Modular Route to Sequence-Defined Polymers Appended to DNA (Angew.) Tj ETQq $1\ 1\ 0$).784314 2.0	rgBT /Overlo
72	Gold Nanoparticle 3Dâ€DNA Building Blocks: High Purity Preparation and Use for Modular Access to Nanoparticle Assemblies. Small, 2014, 10, 660-666.	10.0	42

#	Article	IF	CITATIONS
73	An Efficient and Modular Route to Sequenceâ€Defined Polymers Appended to DNA. Angewandte Chemie - International Edition, 2014, 53, 4567-4571.	13.8	127
74	Precision Polymers and 3D DNA Nanostructures: Emergent Assemblies from New Parameter Space. Journal of the American Chemical Society, 2014, 136, 15767-15774.	13.7	94
75	Controlled Growth of DNA Structures From Repeating Units Using the Vernier Mechanism. Biomacromolecules, 2014, 15, 3002-3008.	5.4	7
76	Nucleobase peptide amphiphiles. Materials Horizons, 2014, 1, 348-354.	12.2	22
77	Development and Characterization of Gene Silencing DNA Cages. Biomacromolecules, 2014, 15, 276-282.	5.4	71
78	Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles. Chemical Science, 2014, 5, 2449-2455.	7.4	67
79	Mechatronic DNA devices driven by a G-quadruplex-binding platinum ligand. Bioorganic and Medicinal Chemistry, 2014, 22, 4376-4383.	3.0	2
80	Three-dimensional DNA structures: design and biological applications. , 2014, , .		0
81	Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nature Chemistry, 2013, 5, 868-875.	13.6	192
82	Electrogenerated Chemiluminescence of Iridium-Containing ROMP Block Copolymer and Self-Assembled Micelles. Langmuir, 2013, 29, 12866-12873.	3.5	24
83	Intercalators as Molecular Chaperones in DNA Self-Assembly. Journal of the American Chemical Society, 2013, 135, 11283-11288.	13.7	43
84	Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid, Room-Temperature Assembly and Readily Tunable Structure. ACS Nano, 2013, 7, 3022-3028.	14.6	48
85	DNA nanostructure serum stability: greater than the sum of its parts. Chemical Communications, 2013, 49, 1172.	4.1	202
86	Visualizing the Formation and Exploring the Structure and Dynamics of DNA-Architectures. A Single Molecule Study. Biophysical Journal, 2013, 104, 177a.	0.5	0
87	A Platinum(II) Phenylphenanthroimidazole with an Extended Sideâ€Chain Exhibits Slow Dissociation from a <i>câ€Kit</i> Gâ€Quadruplex Motif. Chemistry - A European Journal, 2013, 19, 17836-17845.	3.3	28
88	Longâ€range assembly of DNA into nanofibers and highly ordered networks. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 266-285.	6.1	16
89	Three-Dimensional Organization of Block Copolymers on "DNA-Minimal―Scaffolds. Journal of the American Chemical Society, 2012, 134, 4280-4286.	13.7	78
90	Stimuli-responsive organization of block copolymers on DNA nanotubes. Chemical Science, 2012, 3, 1980.	7.4	55

#	Article	IF	Citations
91	The Role of Organic Linkers in Directing DNA Self-Assembly and Significantly Stabilizing DNA Duplexes. Journal of the American Chemical Society, 2012, 134, 14382-14389.	13.7	32
92	Rolling Circle Amplification-Templated DNA Nanotubes Show Increased Stability and Cell Penetration Ability. Journal of the American Chemical Society, 2012, 134, 2888-2891.	13.7	187
93	Luminescent Iridium(III)-Containing Block Copolymers: Self-Assembly into Biotin-Labeled Micelles for Biodetection Assays. ACS Macro Letters, 2012, 1, 954-959.	4.8	37
94	Platinum(II) Phenanthroimidazoles for Targeting Telomeric Gâ€Quadruplexes. ChemMedChem, 2012, 7, 85-94.	3.2	35
95	A facile, modular and high yield method to assemble three-dimensional DNA structures. Chemical Communications, 2011, 47, 8925.	4.1	30
96	Supramolecular DNA assembly. Chemical Society Reviews, 2011, 40, 5647.	38.1	255
97	Chiral Metal–DNA Fourâ€Arm Junctions and Metalated Nanotubular Structures. Angewandte Chemie - International Edition, 2011, 50, 4620-4623.	13.8	43
98	Self-Assembly of Metal-DNA Triangles and DNA Nanotubes with Synthetic Junctions. Methods in Molecular Biology, 2011, 749, 33-47.	0.9	4
99	DNA modified with metal complexes: Applications in the construction of higher order metal–DNA nanostructures. Coordination Chemistry Reviews, 2010, 254, 2403-2415.	18.8	95
100	Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Current Opinion in Chemical Biology, 2010, 14, 597-607.	6.1	78
101	Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chemistry, 2010, 2, 319-328.	13.6	297
102	Long-Range Assembly of DNA into Nanofibers and Highly Ordered Networks Using a Block Copolymer Approach. Journal of the American Chemical Society, 2010, 132, 679-685.	13.7	70
103	Ring-Opening Metathesis Polymers for Biodetection and Signal Amplification: Synthesis and Self-Assembly. Macromolecules, 2010, 43, 5530-5537.	4.8	76
104	Stable Gold Nanoparticle Conjugation to Internal DNA Positions: Facile Generation of Discrete Gold Nanoparticleâ^DNA Assemblies. Bioconjugate Chemistry, 2010, 21, 1413-1416.	3.6	50
105	Quantifying Interactions Between G-Quadruplex DNA and Transition-Metal Complexes. Methods in Molecular Biology, 2010, 608, 223-255.	0.9	7
106	Templated Synthesis of DNA Nanotubes with Controlled, Predetermined Lengths. Journal of the American Chemical Society, 2010, 132, 10212-10214.	13.7	63
107	Supramolecular DNA nanotechnology. Pure and Applied Chemistry, 2009, 81, 2157-2181.	1.9	15
108	Templated Ligand Environments for the Selective Incorporation of Different Metals into DNA. Angewandte Chemie - International Edition, 2009, 48, 9919-9923.	13.8	58

#	Article	IF	Citations
109	Cover Picture: Templated Ligand Environments for the Selective Incorporation of Different Metals into DNA (Angew. Chem. Int. Ed. 52/2009). Angewandte Chemie - International Edition, 2009, 48, 9757-9757.	13.8	O
110	Evaluation of binding selectivities and affinities of platinumâ€based quadruplex interactive complexes by electrospray ionization mass spectrometry. Biopolymers, 2009, 91, 233-243.	2.4	29
111	Metal–nucleic acid cages. Nature Chemistry, 2009, 1, 390-396.	13.6	151
112	Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. Nature Nanotechnology, 2009, 4, 349-352.	31.5	122
113	Hydrogen-bond self-assembly of DNA-base analogues — Experimental results. Canadian Journal of Chemistry, 2009, 87, 627-639.	1.1	3
114	Nucleobase-Templated Polymerization: Copying the Chain Length and Polydispersity of Living Polymers into Conjugated Polymers. Journal of the American Chemical Society, 2009, 131, 4182-4183.	13.7	130
115	Platinum Phenanthroimidazole Complexes as Gâ€Quadruplex DNA Selective Binders. Chemistry - A European Journal, 2008, 14, 1145-1154.	3.3	113
116	Templated Synthesis of Highly Stable, Electroactive, and Dynamic Metal–DNA Branched Junctions. Angewandte Chemie - International Edition, 2008, 47, 2443-2446.	13.8	89
117	Inside Cover: Templated Synthesis of Highly Stable, Electroactive, and Dynamic Metal–DNA Branched Junctions (Angew. Chem. Int. Ed. 13/2008). Angewandte Chemie - International Edition, 2008, 47, 2320-2320.	13.8	0
118	A Platinum Supramolecular Square as an Effective G-Quadruplex Binder and Telomerase Inhibitor. Journal of the American Chemical Society, 2008, 130, 10040-10041.	13.7	200
119	Synthesis and Molecular Recognition of Conjugated Polymer with DNA-Mimetic Properties. Macromolecules, 2008, 41, 5590-5603.	4.8	41
120	Assembling Materials with DNA as the Guide. Science, 2008, 321, 1795-1799.	12.6	933
121	DNA-mediated patterning of gold nanoparticles into discrete structures: modularity, write/erase, and structural switching. Proceedings of SPIE, 2007, , .	0.8	0
122	Luminescent Vesicles, Tubules, Bowls, and Star Micelles from Rutheniumâ^Bipyridine Block Copolymers. Macromolecules, 2007, 40, 3733-3738.	4.8	40
123	Guest-Mediated Access to a Single DNA Nanostructure from a Library of Multiple Assemblies. Journal of the American Chemical Society, 2007, 129, 10070-10071.	13.7	53
124	Modular Access to Structurally Switchable 3D Discrete DNA Assemblies. Journal of the American Chemical Society, 2007, 129, 13376-13377.	13.7	264
125	Dynamic DNA Templates for Discrete Gold Nanoparticle Assemblies:Â Control of Geometry, Modularity, Write/Erase and Structural Switching. Journal of the American Chemical Society, 2007, 129, 4130-4131.	13.7	266
126	DNA–Protein Noncovalent Cross-Linking: Ruthenium Dipyridophenazine Biotin Complex for the Assembly of Proteins and Gold Nanoparticles on DNA Templates. ChemBioChem, 2007, 8, 804-812.	2.6	20

#	Article	IF	CITATIONS
127	Molecule-Responsive Block Copolymer Micelles. Chemistry - A European Journal, 2007, 13, 4560-4570.	3.3	54
128	Theoretical study of self-assembled hydrogen-bonded azodibenzoic acid tapes and rosettes. Computational and Theoretical Chemistry, 2007, 806, 39-50.	1.5	3
129	Sequential Self-Assembly of a DNA Hexagon as a Template for the Organization of Gold Nanoparticles. Angewandte Chemie - International Edition, 2006, 45, 2204-2209.	13.8	191
130	Biotin-Terminated Ruthenium Bipyridine Ring-Opening Metathesis Polymerization Copolymers:Â Synthesis and Self-Assembly with Streptavidin. Macromolecules, 2005, 38, 1084-1090.	4.8	79
131	Hydrogen-bond self-assembly of DNA-analogues into hexameric rosettes. Chemical Communications, 2005, , 5441.	4.1	23
132	Self-Assembly of Cyclic Metal-DNA Nanostructures using Ruthenium Tris(bipyridine)-Branched Oligonucleotides. Angewandte Chemie - International Edition, 2004, 43, 5804-5808.	13.8	88
133	Ruthenium(II) Dipyridoquinoxaline-Norbornene:Â Synthesis, Properties, Crystal Structure, and Use as a ROMP Monomer. Inorganic Chemistry, 2004, 43, 5112-5119.	4.0	24
134	Ruthenium Bipyridine-Containing Polymers and Block Copolymers via Ring-Opening Metathesis Polymerization. Macromolecules, 2004, 37, 5866-5872.	4.8	73
135	Ruthenium(II)â^'Phenanthrolineâ^'Biotin Complexes:  Synthesis and Luminescence Enhancement upon Binding to Avidin. Bioconjugate Chemistry, 2004, 15, 949-953.	3.6	27
136	Photoresponsive Supramolecular Systems: Self-Assembly of Azodibenzoic Acid Linear Tapes and Cyclic Tetramers. Chemistry - A European Journal, 2003, 9, 4771-4780.	3.3	89
137	Self-Complementary ABC Triblock Copolymers via Ring-Opening Metathesis Polymerization. Macromolecules, 2003, 36, 7899-7902.	4.8	42
138	Synthesis and Self-Assembly of Conjugated Polymer Precursors Containing Dichlorocarbonate Groups by Living Ring-Opening Metathesis Polymerization. Macromolecules, 2002, 35, 624-629.	4.8	8
139	Adenine-Containing Block Copolymers via Ring-Opening Metathesis Polymerization:  Synthesis and Self-Assembly into Rod Morphologies. Macromolecules, 2002, 35, 9617-9620.	4.8	97
140	Title is missing!. Macromolecular Chemistry and Physics, 2002, 203, 1988-1994.	2.2	29
141	Solid-Phase Synthesis of Transition Metal Linked, Branched Oligonucleotides. Angewandte Chemie - International Edition, 2001, 40, 4629-4632.	13.8	58
142	Multicomponent Self-Assembly:  Generation of Rigid-Rack Multimetallic Pseudorotaxanes. Inorganic Chemistry, 1997, 36, 4734-4742.	4.0	69
143	Multicomponent Self-Assembly: Generation and Crystal Structure of a Trimetallic[4]Pseudorotaxane. Angewandte Chemie International Edition in English, 1997, 36, 1294-1296.	4.4	40
144	Self-assembly of rigid-rack multimetallic complexes of rotaxane-type. Journal of the Chemical Society Chemical Communications, 1995, , 715.	2.0	85

#	Article	IF	CITATION
145	Electrophilic reactions of zerovalent tungsten nitrene and hydrazido complexes with phosphines. Synthesis and structure of (CO)4W[PPh2CH2PPh2NNMe2-N,P]. Organometallics, 1993, 12, 2440-2444.	2.3	11
146	Metathesis and diaziridination reactions of (CO)5W=C(OMe)-p-XC6H4 with cis-azobenzene. Electronic and solvent effects. Journal of the American Chemical Society, 1992, 114, 5153-5160.	13.7	27
147	Direct observation of the low-valent hydrazido complex (CO)5W:NNMe2, a nitrene analog of the heteroatom-stabilized Fischer carbenes. Organometallics, 1991, 10, 541-543.	2.3	9
148	Evidence for ambiphilic behavior in (CO)5W:NPh. Conversion of carbonyl compounds to N-phenyl imines via metathesis. Journal of the American Chemical Society, 1991, 113, 4871-4876.	13.7	31
149	Trapping of the low-valent nitrene complex (CO)5W:NPh with triphenylphosphine. Formation of the phenylnitrene transfer product PhN = PPh3. Journal of the American Chemical Society, 1989, 111, 8007-8009.	13.7	33
150	Photochemical azo metathesis by tungsten carbene (OC)5W:C(OCH3)CH3. Isolation of a of a zwitterionic intermediate. Journal of the American Chemical Society, 1988, 110, 8700-8701.	13.7	33