Ariff Bongso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4837255/publications.pdf Version: 2024-02-01

ADJEE RONCSO

#	Article	IF	CITATIONS
1	Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Research and Therapy, 2020, 11, 527.	5.5	9
2	Tissues derived from reprogrammed Wharton's jelly stem cells of the umbilical cord as a platform to study gestational diabetes mellitus. Stem Cell Research, 2020, 47, 101880.	0.7	2
3	Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium. Stem Cell Research and Therapy, 2020, 11, 78.	5.5	14
4	Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells International, 2020, 2020, 1-14.	2.5	9
5	Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton's jelly stem cells with and without a nanocarrier. Journal of Cellular Biochemistry, 2019, 120, 11222-11240.	2.6	7
6	Manufacturing of human Wharton's jelly stem cells for clinical use: selection of serum is important. Cytotherapy, 2019, 21, 483-495.	0.7	16
7	Changes in Stemness Properties, Differentiation Potential, Oxidative Stress, Senescence and Mitochondrial Function in Wharton's Jelly Stem Cells of Umbilical Cords of Mothers with Gestational Diabetes Mellitus. Stem Cell Reviews and Reports, 2019, 15, 415-426.	5.6	26
8	Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal Stem Cells Using Single-Cell RNA-Sequencing. Stem Cells and Development, 2019, 28, 196-211.	2.1	52
9	Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity, 2018, 49, 326-341.e7.	14.3	235
10	Biology of human primitive erythroblasts for application in noninvasive prenatal diagnosis. Prenatal Diagnosis, 2018, 38, 673-684.	2.3	7
11	Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton's Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Reviews and Reports, 2017, 13, 801-816.	5.6	12
12	Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. Journal of Cellular Biochemistry, 2017, 118, 437-441.	2.6	5
13	Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Postâ€Thaw Mesenchymal Stem Cell Numbers for Cellâ€Based Therapies. Journal of Cellular Biochemistry, 2016, 117, 815-827.	2.6	29
14	Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation. Journal of Cellular Biochemistry, 2016, 117, 2045-2055.	2.6	25
15	Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0127992.	2.5	108
16	Human Wharton's Jelly Stem Cells and Its Conditioned Medium Enhance Healing of Excisional and Diabetic Wounds. Journal of Cellular Biochemistry, 2014, 115, 290-302.	2.6	70
17	Human Wharton's Jelly Stem Cells, its Conditioned Medium and Cell-Free Lysate Inhibit the Growth of Human Lymphoma Cells. Stem Cell Reviews and Reports, 2014, 10, 573-586.	5.6	43
18	Human Keloid Cell Characterization and Inhibition of Growth with Human Wharton's Jelly Stem Cell Extracts. Journal of Cellular Biochemistry, 2014, 115, 826-838.	2.6	31

ARIFF BONGSO

#	Article	IF	CITATIONS
19	A Nanoscaffold Impregnated With Human Wharton's Jelly Stem Cells or Its Secretions Improves Healing of Wounds. Journal of Cellular Biochemistry, 2014, 115, 794-803.	2.6	42
20	Human Wharton's Jelly Stem Cell Conditioned Medium Enhances Freeze-Thaw Survival and Expansion of Cryopreserved CD34+ Cells. Stem Cell Reviews and Reports, 2013, 9, 172-183.	5.6	14
21	Human Wharton's Jelly stem cell conditioned medium and cellâ€free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. Journal of Cellular Biochemistry, 2013, 114, 366-377.	2.6	33
22	The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton's Jelly of the Human Umbilical Cord. Stem Cell Reviews and Reports, 2013, 9, 226-240.	5.6	183
23	Propagation and Differentiation of Human Wharton's Jelly Stem Cells on Three-Dimensional Nanofibrous Scaffolds. Methods in Molecular Biology, 2013, 1058, 1-23.	0.9	10
24	Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive BioMedicine Online, 2012, 24, 235-246.	2.4	74
25	Human umbilical cord wharton's jelly mesenchymal stem cells do not transform to tumorâ€associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 2012, 113, 1886-1895.	2.6	84
26	Human umbilical cord wharton's jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 2012, 113, 2027-2039.	2.6	127
27	Human Umbilical Cord Wharton's Jelly Stem Cells Undergo Enhanced Chondrogenic Differentiation when Grown on Nanofibrous Scaffolds and in a Sequential Two-stage Culture Medium Environment. Stem Cell Reviews and Reports, 2012, 8, 195-209.	5.6	106
28	Osteogenic Differentiation of Human Wharton's Jelly Stem Cells on Nanofibrous Substrates <i>In Vitro</i> . Tissue Engineering - Part A, 2011, 17, 71-81.	3.1	32
29	Human Wharton's Jelly Stem Cells Have Unique Transcriptome Profiles Compared to Human Embryonic Stem Cells and Other Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 1-16.	5.6	296
30	Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child. Journal of Cellular Biochemistry, 2011, 112, 1475-1485.	2.6	18
31	Effect of ROCK Inhibitor Y-27632 on Normal and Variant Human Embryonic Stem Cells (hESCs) In Vitro: Its Benefits in hESC Expansion. Stem Cell Reviews and Reports, 2010, 6, 86-95.	5.6	74
32	ROCK Inhibitor Y-27632 Increases Thaw-Survival Rates and Preserves Stemness and Differentiation Potential of Human Wharton's Jelly Stem Cells After Cryopreservation. Stem Cell Reviews and Reports, 2010, 6, 665-676.	5.6	29
33	Teratomas from pluripotent stem cells: A clinical hurdle. Journal of Cellular Biochemistry, 2010, 111, 769-781.	2.6	197
34	Derivation efficiency, cell proliferation, freeze–thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells. Reproductive BioMedicine Online, 2010, 21, 391-401.	2.4	111
35	Human Embryonic Stem Cell-derived Tissue Transplantation Therapy: Clinical Hurdles. , 2010, , 155-183.		0
36	Human Umbilical Cord Wharton's Jelly Stem Cells: Their Nature, Properties and Benefits. , 2010, ,		0

303-322.

ARIFF BONGSO

#	Article	IF	CITATIONS
37	Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. Journal of Cellular and Molecular Medicine, 2009, 13, 3475-3484.	3.6	53
38	Statins, stem cells, and cancer. Journal of Cellular Biochemistry, 2009, 106, 975-983.	2.6	89
39	Separation of SSEA-4 and TRA-1–60 Labelled Undifferentiated Human Embryonic Stem Cells from A Heterogeneous Cell Population Using Magnetic-Activated Cell Sorting (MACS) and Fluorescence-Activated Cell Sorting (FACS). Stem Cell Reviews and Reports, 2009, 5, 72-80.	5.6	146
40	The Use of Discontinuous Density Gradients in Stem Cell Research and Application. Stem Cell Reviews and Reports, 2009, 5, 428-434.	5.6	6
41	A Three Dimensional Anchorage Independent In Vitro System for the Prolonged Growth of Embryoid Bodies to Study Cancer Cell Behaviour and Anticancer Agents. Stem Cell Reviews and Reports, 2009, 5, 410-419.	5.6	13
42	Human Embryonic Stem Cells: Their Nature, Properties, and Uses. , 2009, , 1-17.		5
43	Reproductive Stem Cells of Embryonic Origin: Comparative Properties and Potential Benefits of Human Embryonic Stem Cells and Wharton's Jelly Stem Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 136-149.	0.1	2
44	Reproductive Stem Cells of Embryonic Origin: Comparative Properties and Potential Benefits of Human Embryonic Stem Cells and Wharton's Jelly Stem Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 136-149.	0.1	1
45	Taking stem cells to the clinic: Major challenges. Journal of Cellular Biochemistry, 2008, 105, 1352-1360.	2.6	162
46	Comparative evaluation of the effects of statins on human stem and cancer cells in vitro. Reproductive BioMedicine Online, 2007, 15, 566-581.	2.4	30
47	Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres. Reproductive BioMedicine Online, 2006, 13, 295-300.	2.4	23
48	Reverse Serial Analysis of Gene Expression (SAGE) Characterization of Orphan SAGE Tags from Human Embryonic Stem Cells Identifies the Presence of Novel Transcripts and Antisense Transcription of Key Pluripotency Genes. Stem Cells, 2006, 24, 1162-1173.	3.2	29
49	Blastocyst Culture for Deriving Human Embryonic Stem Cells. , 2006, 331, 13-22.		9
50	Human Blastocyst Culture and Derivation of Embryonic Stem Cell Lines. Stem Cell Reviews and Reports, 2005, 1, 087-098.	5.6	17
51	History and perspective of stem cell research. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2004, 18, 827-842.	2.8	95
52	An Efficient and Safe Xeno-Free Cryopreservation Method for the Storage of Human Embryonic Stem Cells. Stem Cells, 2004, 22, 779-789.	3.2	127
53	The Transcriptome Profile of Human Embryonic Stem Cells as Defined by SAGE. Stem Cells, 2004, 22, 51-64.	3.2	387
54	Comparative Evaluation of Various Human Feeders for Prolonged Undifferentiated Growth of Human Embryonic Stem Cells. Stem Cells, 2003, 21, 546-556.	3.2	274

ARIFF BONGSO

#	Article	IF	CITATIONS
55	Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnology, 2002, 20, 933-936.	17.5	716
56	Transformation of the Adult Human Mesenchymal Stem Cells into Cardiomyocyte-Like Cells in Vivo. Cardiovascular Engineering (Dordrecht, Netherlands), 2002, 2, 7-14.	1.0	11
57	Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000, 18, 399-404.	17.5	2,554
58	Comparative evaluation of two density gradient preparations for sperm separation for medically assisted conception. Human Reproduction, 1999, 14, 759-764.	0.9	71
59	The First 2 Case Reports of Frozen Embryo Donation Twin Pregnancies in Singapore: Hormonal Profiles and Obstetrical Outcome. Journal of Obstetrics and Gynaecology Research, 1998, 24, 203-209.	1.3	0
60	Behaviour of Human Embryos in Vitro in the First 14 Days: Blastocyst Transfer and Embryonic Stem Cell Production. Clinical Science, 1996, 91, 248-249.	4.3	4
61	Oviductal cells and early conception. Reproductive Medicine Review, 1995, 4, 31-41.	0.3	2
62	Human embryonic behavior in a sequential human oviduct-endometrial coculture system. Fertility and Sterility, 1994, 61, 976-978.	1.0	44
63	Fertilization and early embryology: Isolation and culture of inner cell mass cells from human blastocysts. Human Reproduction, 1994, 9, 2110-2117.	0.9	258
64	An Interesting Case of Intersex: Case Report. Asia-Oceania Journal of Obstetrics and Gynaecology, 1994, 20, 121-124.	0.0	0
65	Mitogenic and cytogenetic evaluation of transforming growth factor-? on murine preimplantation embryonic development in vitro. Molecular Reproduction and Development, 1993, 36, 482-487.	2.0	14
66	Fetal Blood Sampling and Its Complications Related to the Indications for Fetal Blood Sampling. Australian and New Zealand Journal of Obstetrics and Gynaecology, 1993, 33, 259-261.	1.0	7
67	Improved pregnancy rate after transfer of embryos grown in human fallopian tubal cell coculture. Fertility and Sterility, 1992, 58, 569-574.	1.0	109
68	In vitro decondensation of mammalian sperm and subsequent formation of pronuclei-like structures for micromanipulation. Molecular Reproduction and Development, 1992, 33, 338-346.	2.0	27
69	Outcome of 143 Pregnancies Conceived by Assisted Reproductive Techniques. Asia-Oceania Journal of Obstetrics and Gynaecology, 1992, 18, 299-307.	0.0	5
70	Co-cultures: their relevance to assisted reproduction. Human Reproduction, 1990, 5, 893-900.	0.9	76
71	Establishment of human ampullary cell cultures. Human Reproduction, 1989, 4, 486-494.	0.9	53