Chao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836843/publications.pdf

Version: 2024-02-01

94433 123424 3,893 67 37 61 citations h-index g-index papers 68 68 68 1255 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Improvement of strength and ductility synergy in a room-temperature stretch-formable Mg-Al-Mn alloy sheet by twin-roll casting and low-temperature annealing. Journal of Magnesium and Alloys, 2022, 10, 1066-1074.	11.9	22
2	Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum. Journal of Materials Science and Technology, 2022, 111, 256-267.	10.7	23
3	Role of homogenization on tensile properties and microstructures in a dilute Mg–Zn–Ca–Mn alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142541.	5.6	8
4	Effects of La Addition on the Microstructure, Thermal Conductivity and Mechanical Properties of Mg-3Al-0.3Mn Alloys. Materials, 2022, 15, 1078.	2.9	9
5	Superior strength-ductility synergy of layered aluminum under uniaxial tensile loading: The roles of local stress state and local strain state. International Journal of Plasticity, 2022, 152, 103240.	8.8	24
6	Intermediate-Temperature Tensile Behavior of a Hot-Rolled Mg-Li-Al-Cd-Zn Alloy. Materials, 2022, 15, 1686.	2.9	2
7	Effect of Al Addition on Grain Refinement and Phase Transformation of the Mg-Gd-Y-Zn-Mn Alloy Containing LPSO Phase. Materials, 2022, 15, 1632.	2.9	2
8	Development of corrosion-resistant Mg-Al-Ca-Mn-Zn alloy sheet with good tensile properties and stretch formability. Journal of Alloys and Compounds, 2022, 910, 164752.	5.5	15
9	Microtexture-induced anomalous anisotropic tensile behavior in Mg–Al–Zn alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 143002.	5.6	4
10	Effect of grain boundary segregation on microstructure and mechanical properties of ultra-fine grained Mg–Al–Ca–Mn alloy wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143423.	5.6	11
11	Quasi-in-situ observing the rare earth texture evolution in an extruded Mg-Zn-Gd alloy with bimodal microstructure. Journal of Magnesium and Alloys, 2021, 9, 1797-1805.	11.9	40
12	Effect of extrusion ratio and temperature on microstructures and tensile properties of extruded Mg-Gd-Y-Mn-Sc alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140330.	5.6	34
13	Achieving an ultra-high strength and moderate ductility in Mg–Gd–Y–Zn–Zr alloy via a decreased-temperature multi-directional forging. Materials Characterization, 2021, 171, 110804.	4.4	38
14	Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella. Journal of Materials Science and Technology, 2021, 73, 66-75.	10.7	38
15	Improving room-temperature stretch formability of a high-alloyed Mg–Al–Ca–Mn alloy sheet by a high-temperature solution-treatment. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140399.	5.6	26
16	Fabrication and strengthening mechanisms of magnesium matrix composites with bimodal microstructure induced by graphene nanoplatelets. Journal of Materials Research, 2021, 36, 764-774.	2.6	9
17	Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers. Acta Materialia, 2021, 206, 116627.	7.9	62
18	Fabrication and deformation behavior of a novel laminated TiAl matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141603.	5.6	10

#	Article	IF	CITATIONS
19	Development of a Low-Cost and Room-Temperature Formable Mg Alloy Sheet with In-Plane Isotropic Tensile Properties. Minerals, Metals and Materials Series, 2021, , 13-18.	0.4	0
20	Formation of anomalous twinning and its effect on texture development in a cold-rolled Mg-Zn-Ca alloy sheet. Materials Characterization, 2021, 181, 111507.	4.4	15
21	Improving tensile properties of a room-temperature formable and heat-treatable Mg–6Zn-0.2Ca (wt.%) alloy sheet via micro-alloying of Al and Mn. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138690.	5 . 6	31
22	Enhanced strength by precipitate modification in wrought Mg–Al–Ca alloy with trace Mn addition. Journal of Alloys and Compounds, 2020, 836, 154689.	5 . 5	31
23	New Mg–Al based alloy sheet with good room-temperature stretch formability and tensile properties. Scripta Materialia, 2020, 180, 16-22.	5.2	46
24	Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr. Journal of Magnesium and Alloys, 2019, 7, 388-399.	11.9	73
25	Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn alloy with Mn or Zr addition. Journal of Materials Science, 2019, 54, 10473-10488.	3.7	23
26	Effect of trace zinc on the microstructure and mechanical properties of extruded Mg-Gd-Y-Zr alloy. Journal of Alloys and Compounds, 2019, 789, 416-427.	5 . 5	36
27	3D Visualized Characterization of Fracture Behavior of Structural Metals Using Synchrotron Radiation Computed Microtomography. Quantum Beam Science, 2019, 3, 5.	1.2	2
28	Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents. Journal of Alloys and Compounds, 2019, 792, 130-141.	5 . 5	70
29	2D/3D local strain analysis of layered metal composites with a strength-ductility synergy. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012038.	0.6	0
30	Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg–Al–Ca–Mn-Based Alloys. Acta Metallurgica Sinica (English Letters), 2019, 32, 205-217.	2.9	6
31	Origin of texture weakening in a rolled ZEX4101 alloy sheet and its effect on room temperature formability and tensile property. Journal of Alloys and Compounds, 2019, 782, 304-314.	5. 5	39
32	Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1931-1947.	2.2	135
33	Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion. Journal of Materials Science and Technology, 2018, 34, 277-283.	10.7	42
34	Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 234-243.	5 . 6	70
35	Role of layered structure in ductility improvement of layered Ti-Al metal composite. Acta Materialia, 2018, 153, 235-249.	7.9	244
36	Improving mechanical properties and yield asymmetry in high-speed extrudable Mg-1.1Al-0.24Ca (wt%) alloy by high Mn addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 12-19.	5.6	66

#	Article	IF	CITATIONS
37	Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion. Scientific Reports, 2018, 8, 16800.	3.3	49
38	Enhancing mechanical properties of rolled Mg-Al-Ca-Mn alloy sheet by Zn addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 223-229.	5.6	35
39	High elongation achieved by band-like distribution of reinforcements in aluminum matrix composites. Materials Characterization, 2018, 144, 42-47.	4.4	13
40	Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Materialia, 2018, 157, 53-71.	7.9	352
41	Effect of extrusion parameters on microstructure and mechanical properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 159-167.	5.6	61
42	Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Scientific Reports, 2017, 7, 40846.	3.3	110
43	Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates. Scientific Reports, 2017, 7, 43391.	3.3	72
44	Improving creep property of Mg–Gd–Zn alloy via trace Ca addition. Scripta Materialia, 2017, 139, 34-38.	5.2	32
45	Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Materialia, 2017, 130, 261-270.	7.9	163
46	Hot compression deformation behavior of Mg-9Gd-2.9Y-1.9Zn-0.4Zr-0.2Ca (wt%) alloy. Materials Characterization, 2017, 124, 40-49.	4.4	55
47	Effects of pre-annealing on microstructure and mechanical properties of as-extruded Mg-Gd-Y-Zn-Zr alloy. Journal of Alloys and Compounds, 2017, 729, 627-637.	5.5	71
48	Microstructure and mechanical properties of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr supersaturated solid solution prepared by high pressure torsion. Materials and Design, 2017, 135, 366-376.	7.0	59
49	Influence of Ca-Ce/La synergistic alloying on the microstructure and mechanical properties of extruded Mg–Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 11-20.	5.6	52
50	Effect of Aging Treatment on the Precipitation Behavior and Mechanical Properties of Mg-9Gd-3Y-1.5Zn-0.5Zr Alloy. Journal of Materials Engineering and Performance, 2017, 26, 5963-5972.	2.5	30
51	Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys. Materials Science & Carlon Science &	5.6	96
52	Enhancing strength and ductility of Mg-Zn-Gd alloy via slow-speed extrusion combined with pre-forging. Journal of Alloys and Compounds, 2017, 694, 1214-1223.	5 . 5	41
53	Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing. Materials Science & Description of Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 348-358.	5.6	95
54	High-speed extrusion of dilute Mg-Zn-Ca-Mn alloys and its effect on microstructure, texture and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 329-338.	5.6	83

#	Article	IF	CITATIONS
55	Optimization of Mn content for high strengths in high-speed extruded Mg-0.3Al-0.3Ca (wt%) dilute alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 443-449.	5.6	51
56	Ultrahigh strength as-extruded Mg–10.3Zn–6.4Y–0.4Zr–0.5Ca alloy containing W phase. Materials and Design, 2016, 108, 391-399.	7.0	79
57	Rare earth texture and improved ductility in a Mg-Zn-Gd alloy after high-speed extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 233-239.	5.6	138
58	Development of dilute Mg–Zn–Ca–Mn alloy with high performance via extrusion. Journal of Alloys and Compounds, 2016, 668, 13-21.	5.5	101
59	Improving tensile properties of dilute Mg-0.27Al-0.13Ca-0.21Mn (at.%) alloy by low temperature high speed extrusion. Journal of Alloys and Compounds, 2015, 648, 428-437.	5.5	69
60	Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg–8.2Gd–3.8Y–1Zn–0.4Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 112-117.	5.6	54
61	Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (wt%) alloys. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 6-13.	5.6	74
62	Effect of final rolling reduction on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Materials Science & Droperties, Microstructure and Processing, 2013, 559, 232-240.	5.6	49
63	Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 364-370.	5.6	61
64	Influence of rolling temperature on the microstructure and mechanical properties of Mg–Gd–Y–Zr alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 615-622.	5.6	63
65	Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. Journal of Alloys and Compounds, 2012, 524, 46-52.	5.5	101
66	Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 547, 93-98.	5.6	214
67	Microstructure and mechanical properties of the Mg–Gd–Y–Zn–Zr alloy fabricated by semi-continuous casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 128-135.	5.6	61