
Arianna Piccialli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
2	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	1.7	5
3	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	4.0	7
4	CO2 retrievals in the Mars daylight thermosphere from its 4.3†μm limb emission measured by OMEGA/MEx. Icarus, 2021, 353, 113830.	2.5	6
5	Impact of gradients at the martian terminator on the retrieval of ozone from SPICAM/MEx. Icarus, 2021, 353, 113598.	2.5	8
6	Determination of the Venus eddy diffusion profile from CO and CO2 profiles using SOIR/Venus Express observations. Icarus, 2021, 361, 114388.	2.5	6
7	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	3.6	14
8	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	8
9	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006837.	3.6	18
10	First Detection and Thermal Characterization of Terminator CO ₂ 1ce Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	4.0	12
11	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	4.0	62
12	COVID-19 lockdown effects on gender inequality. Nature Astronomy, 2020, 4, 1114-1114.	10.1	28
13	SOIR/VEx observations of water vapor at the terminator in the Venus mesosphere. Icarus, 2020, 346, 113819.	2.5	15
14	The contribution of the ARIEL space mission to the study of planetary formation. Experimental Astronomy, 2018, 46, 45-65.	3.7	19
15	Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators. Icarus, 2018, 299, 370-385.	2.5	3
16	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
17	Venus's winds and temperatures during the MESSENGER's flyby: An approximation to a threeâ€dimensional instantaneous state of the atmosphere. Geophysical Research Letters, 2017, 44, 3907-3915.	4.0	18
18	CO 2 nonâ€LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express. Journal of Geophysical Research E: Planets, 2016, 121, 1066-1086.	3.6	6

ARIANNA PICCIALLI

#	Article	IF	CITATIONS
19	Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 <i>μ</i> m. Astronomy and Astrophysics, 2016, 585, A53.	5.1	12
20	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	1.7	37
21	Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planetary and Space Science, 2015, 113-114, 309-320.	1.7	59
22	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 18.	7.7	34
23	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 17.	7.7	30
24	High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express. Icarus, 2014, 227, 94-111.	2.5	41
25	Characterizing atmospheric waves on Venus, Earth, and Mars. Eos, 2012, 93, 220-220.	0.1	1
26	Vertical structure of the Venus cloud top from the VeRa and VIRTIS observations onboard Venus Express. Icarus, 2012, 217, 599-609.	2.5	57
27	Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus, 2012, 217, 669-681.	2.5	65
28	Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. Journal of Geophysical Research, 2008, 113, .	3.3	33
29	Mapping the thermal structure and minor species of Venus mesosphere with ALMA submillimeter observations. Astronomy and Astrophysics, 0, , .	5.1	6
30	Participation of women scientists in ESA solar system missions: a historical trend. Advances in Geosciences, 0, 53, 169-182.	12.0	1