
Barbara G Shinn-Cunningham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4835718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Object-based auditory and visual attention. Trends in Cognitive Sciences, 2008, 12, 182-186.	7.8	591
2	Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG. Cerebral Cortex, 2015, 25, 1697-1706.	2.9	579
3	Selective Attention in Normal and Impaired Hearing. Trends in Amplification, 2008, 12, 283-299.	2.4	335
4	Note on informational masking (L). Journal of the Acoustical Society of America, 2003, 113, 2984.	1.1	316
5	Task-modulated "what" and "where" pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14608-14613.	7.1	315
6	Individual Differences Reveal Correlates of Hidden Hearing Deficits. Journal of Neuroscience, 2015, 35, 2161-2172.	3.6	261
7	Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience, 2014, 8, 26.	2.5	212
8	Robustness of Cortical Topography across Fields, Laminae, Anesthetic States, and Neurophysiological Signal Types. Journal of Neuroscience, 2012, 32, 9159-9172.	3.6	196
9	Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy. Journal of Neuroscience, 2016, 36, 3755-3764.	3.6	188
10	Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15516-15521.	7.1	184
11	Localizing nearby sound sources in a classroom: Binaural room impulse responses. Journal of the Acoustical Society of America, 2005, 117, 3100-3115.	1.1	174
12	Informational masking: Counteracting the effects of stimulus uncertainty by decreasing target-masker similarity. Journal of the Acoustical Society of America, 2003, 114, 368-379.	1.1	158
13	Why Middle-Aged Listeners Have Trouble Hearing inÂEveryday Settings. Current Biology, 2012, 22, 1417-1422.	3.9	134
14	Object continuity enhances selective auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13174-13178.	7.1	133
15	Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks. Neuron, 2015, 87, 882-892.	8.1	119
16	Spatial release from energetic and informational masking in a selective speech identification task. Journal of the Acoustical Society of America, 2008, 123, 4369-4379.	1.1	116
17	Tori of confusion: Binaural localization cues for sources within reach of a listener. Journal of the Acoustical Society of America, 2000, 107, 1627-1636.	1.1	99
18	A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones. Journal of the Acoustical Society of America, 2013, 134, 384-395.	1.1	98

#	Article	IF	CITATIONS
19	Adapting to supernormal auditory localization cues. I. Bias and resolution. Journal of the Acoustical Society of America, 1998, 103, 3656-3666.	1.1	94
20	Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography. Frontiers in Human Neuroscience, 2013, 7, 115.	2.0	93
21	Visually-guided Attention Enhances Target Identification in a Complex Auditory Scene. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 294-304.	1.8	89
22	Sparse Contour Representations of Sound. IEEE Signal Processing Letters, 2012, 19, 684-687.	3.6	88
23	Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience and Biobehavioral Reviews, 2018, 87, 106-117.	6.1	87
24	Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 2014, 307, 111-120.	2.0	86
25	Locomotion and Task Demands Differentially Modulate Thalamic Audiovisual Processing during Active Search. Current Biology, 2015, 25, 1885-1891.	3.9	82
26	Cortical interference effects in the cocktail party problem. Nature Neuroscience, 2007, 10, 1601-1607.	14.8	81
27	Non-Invasive Assays of Cochlear Synaptopathy – Candidates and Considerations. Neuroscience, 2019, 407, 53-66.	2.3	81
28	The pupil response reveals increased listening effort when it is difficult to focus attention. Hearing Research, 2015, 323, 81-90.	2.0	79
29	Binaural interference and auditory grouping. Journal of the Acoustical Society of America, 2007, 121, 1070-1076.	1.1	78
30	Accurate Sound Localization in Reverberant Environments Is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain. Neuron, 2009, 62, 123-134.	8.1	78
31	Auditory Spatial Attention Representations in the Human Cerebral Cortex. Cerebral Cortex, 2014, 24, 773-784.	2.9	76
32	The influence of spatial separation on divided listening. Journal of the Acoustical Society of America, 2006, 120, 1506-1516.	1.1	74
33	The pupil response is sensitive to divided attention during speech processing. Hearing Research, 2014, 312, 114-120.	2.0	69
34	Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 2015, 1626, 146-164.	2.2	69
35	Individual differences in attentional modulation of cortical responses correlate with selective attention performance. Hearing Research, 2014, 314, 10-19.	2.0	66
36	Effect of stimulus spectrum on distance perception for nearby sources. Journal of the Acoustical Society of America, 2011, 130, 1530-1541.	1,1	65

#	Article	IF	CITATIONS
37	Reference Frame of the Ventriloquism Aftereffect. Journal of Neuroscience, 2009, 29, 13809-13814.	3.6	64
38	Spatial Selective Auditory Attention in the Presence of Reverberant Energy: Individual Differences in Normal-Hearing Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 395-405.	1.8	64
39	Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch. Frontiers in Neuroscience, 2013, 6, 190.	2.8	60
40	Disentangling the effects of spatial cues on selection and formation of auditory objects. Journal of the Acoustical Society of America, 2008, 124, 2224-2235.	1.1	58
41	Topographic specificity of alpha power during auditory spatial attention. NeuroImage, 2020, 207, 116360.	4.2	58
42	Spatial unmasking of nearby speech sources in a simulated anechoic environment. Journal of the Acoustical Society of America, 2001, 110, 1118-1129.	1.1	56
43	A sound element gets lost in perceptual competition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12223-12227.	7.1	54
44	Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3286-E3295.	7.1	54
45	Influences of auditory object formation on phonemic restoration. Journal of the Acoustical Society of America, 2008, 123, 295-301.	1.1	53
46	Spatial unmasking of birdsong in human listeners: Energetic and informational factors. Journal of the Acoustical Society of America, 2005, 118, 3766-3773.	1.1	52
47	Causal links between parietal alpha activity and spatial auditory attention. ELife, 2019, 8, .	6.0	51
48	Investigating the Effect of Cochlear Synaptopathy on Envelope Following Responses Using a Model of the Auditory Nerve. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 363-382.	1.8	48
49	Measuring auditory selective attention using frequency tagging. Frontiers in Integrative Neuroscience, 2014, 8, 6.	2.1	46
50	Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clinical Neurophysiology, 2014, 125, 1878-1888.	1.5	46
51	Sensory-Biased and Multiple-Demand Processing in Human Lateral Frontal Cortex. Journal of Neuroscience, 2017, 37, 8755-8766.	3.6	46
52	Spatial release from energetic and informational masking in a divided speech identification task. Journal of the Acoustical Society of America, 2008, 123, 4380-4392.	1.1	45
53	Effect of source spectrum on sound localization in an everyday reverberant room. Journal of the Acoustical Society of America, 2011, 130, 324-333.	1.1	45
54	Bottom-up influences of voice continuity in focusing selective auditory attention. Psychological Research, 2014, 78, 349-360.	1.7	45

#	Article	IF	CITATIONS
55	Influence of Task-Relevant and Task-Irrelevant Feature Continuity on Selective Auditory Attention. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 119-129.	1.8	43
56	Auditory Object Formation and Selection. Springer Handbook of Auditory Research, 2017, , 7-40.	0.7	43
57	Functional modeling of the human auditory brainstem response to broadband stimulation. Journal of the Acoustical Society of America, 2015, 138, 1637-1659.	1.1	42
58	Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway. Scientific Reports, 2015, 5, 10319.	3.3	42
59	Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex. Cerebral Cortex, 2016, 26, 1302-1308.	2.9	41
60	Adapting to supernormal auditory localization cues. II. Constraints on adaptation of mean response. Journal of the Acoustical Society of America, 1998, 103, 3667-3676.	1.1	39
61	Sensory coding and cognitive processing of sound in Veterans with blast exposure. Hearing Research, 2017, 349, 98-110.	2.0	38
62	Informational masking for simultaneous nonspeech stimuli: Psychometric functions for fixed and randomly mixed maskers. Journal of the Acoustical Society of America, 2005, 118, 2482-2497.	1.1	37
63	Competing Sound Sources Reveal Spatial Effects in Cortical Processing. PLoS Biology, 2012, 10, e1001319.	5.6	37
64	The Impact of Noise and Hearing Loss on the Processing of Simultaneous Sentences. Ear and Hearing, 2010, 31, 213-220.	2.1	35
65	Spatial cues alone produce inaccurate sound segregation: The effect of interaural time differences. Journal of the Acoustical Society of America, 2012, 132, 357-368.	1.1	34
66	Use of Virtual Environments for Acquiring Configurational Knowledge about Specific Real-World Spaces: I. Preliminary Experiment. Presence: Teleoperators and Virtual Environments, 1999, 8, 632-656.	0.6	33
67	Spatial unmasking of birdsong in zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus) Tj ETQq1	1 0.78431 0.5	4 rgBT /Ovei
68	Sound localization with a preceding distractor. Journal of the Acoustical Society of America, 2007, 121, 420-432.	1.1	31
69	Cortical and Sensory Causes of Individual Differences in Selective Attention Ability Among Listeners With Normal Hearing Thresholds. Journal of Speech, Language, and Hearing Research, 2017, 60, 2976-2988.	1.6	29
70	Electroencephalographic Signatures of the Neural Representation of Speech during Selective Attention. ENeuro, 2019, 6, ENEURO.0057-19.2019.	1.9	29
71	Effects of Sensorineural Hearing Loss on Visually Guided Attention in a Multitalker Environment. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 142-149.	1.8	28
72	Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9743-9748.	7.1	28

#	Article	IF	CITATIONS
73	Nothing Is Irrelevant in a Noisy World: Sensory Illusions Reveal Obligatory within-and across-Modality Integration. Journal of Neuroscience, 2012, 32, 13402-13410.	3.6	26
74	Acoustic eigenvalues of rectangular rooms with arbitrary wall impedances using the interval Newtonâ^•generalized bisection method. Journal of the Acoustical Society of America, 2005, 118, 3662-3671.	1.1	25
75	Exploring the benefit of auditory spatial continuity. Journal of the Acoustical Society of America, 2010, 127, EL258-EL264.	1.1	25
76	Isolating mechanisms that influence measures of the precedence effect: Theoretical predictions and behavioral tests. Journal of the Acoustical Society of America, 2011, 130, 866-882.	1.1	25
77	How Early Aging and Environment Interact in Everyday Listening: From Brainstem to Behavior Through Modeling. Advances in Experimental Medicine and Biology, 2013, 787, 501-510.	1.6	24
78	Adapting to remapped auditory localization cues: A decision-theory model. Perception & Psychophysics, 2000, 62, 33-47.	2.3	23
79	Evaluating Source Separation Algorithms With Reverberant Speech. IEEE Transactions on Audio Speech and Language Processing, 2010, 18, 1872-1883.	3.2	23
80	Physiological and Psychophysical Modeling of the Precedence Effect. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 495-513.	1.8	21
81	Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks. Frontiers in Human Neuroscience, 2016, 10, 530.	2.0	21
82	Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds. Hearing Research, 2017, 346, 34-44.	2.0	21
83	Transformation of temporal sequences in the zebra finch auditory system. ELife, 2016, 5, .	6.0	21
84	Gravitoinertial Force Magnitude and Direction Influence Head-Centric Auditory Localization. Journal of Neurophysiology, 2001, 85, 2455-2460.	1.8	20
85	EEG signatures accompanying auditory figure-ground segregation. Neurolmage, 2016, 141, 108-119.	4.2	19
86	Effects of talker continuity and speech rate on auditory working memory. Attention, Perception, and Psychophysics, 2019, 81, 1167-1177.	1.3	19
87	Influence of talker discontinuity on cortical dynamics of auditory spatial attention. NeuroImage, 2018, 179, 548-556.	4.2	18
88	Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. Journal of the Acoustical Society of America, 2003, 114, 2856-2870.	1.1	17
89	How Visual Cues for when to Listen Aid Selective Auditory Attention. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 359-368.	1.8	17
90	Atypical Perception of Sounds in Minimally and Low Verbal Children and Adolescents With Autism as Revealed by Behavioral and Neural Measures. Autism Research, 2020, 13, 1718-1729.	3.8	17

#	Article	IF	CITATIONS
91	Localization interference between components in an auditory scene. Journal of the Acoustical Society of America, 2009, 126, 2543-2555.	1.1	16
92	Comodulation masking release in speech identification with real and simulated cochlear-implant hearing. Journal of the Acoustical Society of America, 2012, 131, 1315-1324.	1.1	16
93	Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention. Neurolmage, 2019, 202, 116151.	4.2	14
94	Modulation masking and fine structure shape neural envelope coding to predict speech intelligibility across diverse listening conditions. Journal of the Acoustical Society of America, 2021, 150, 2230-2244.	1.1	14
95	Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear and Hearing, 2022, 43, 9-22.	2.1	14
96	Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners. Journal of the Acoustical Society of America, 2013, 133, 2329-2339.	1.1	13
97	Models of Plasticity in Spatial Auditory Processing. Audiology and Neuro-Otology, 2001, 6, 187-191.	1.3	12
98	Masker location uncertainty reveals evidence for suppression of maskers in two-talker contexts. Journal of the Acoustical Society of America, 2011, 130, 2043-2053.	1.1	12
99	Loudness Perception of Pure Tones in Parkinson's Disease. Journal of Speech, Language, and Hearing Research, 2018, 61, 1487-1496.	1.6	12
100	Assessing Cochlear-Place Specific Temporal Coding Using Multi-Band Complex Tones to Measure Envelope-Following Responses. Neuroscience, 2019, 407, 67-74.	2.3	12
101	Audio-visual spatial alignment improves integration in the presence of a competing audio-visual stimulus. Neuropsychologia, 2020, 146, 107530.	1.6	12
102	Extended Frontal Networks for Visual and Auditory Working Memory. Cerebral Cortex, 2022, 32, 855-869.	2.9	12
103	Effects of Reverberant Spatial Cues on Attention-dependent Object Formation. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 150-160.	1.8	11
104	Effects of frequency disparities on trading of an ambiguous tone between two competing auditory objects. Journal of the Acoustical Society of America, 2008, 123, 4340-4351.	1.1	11
105	Individual Differences in Temporal Perception and Their Implications for Everyday Listening. Springer Handbook of Auditory Research, 2017, , 159-192.	0.7	11
106	Effects of Visual Scene Complexity on Neural Signatures of Spatial Attention. Frontiers in Human Neuroscience, 2020, 14, 91.	2.0	11
107	Nonspatial Features Reduce the Reliance on Sustained Spatial Auditory Attention. Ear and Hearing, 2020, 41, 1635-1647.	2.1	11
108	Streaming and sound localization with a preceding distractor. Journal of the Acoustical Society of America, 2017, 141, EL331-EL337.	1.1	10

#	Article	IF	CITATIONS
109	Neural Evidence for Speech Processing Deficits During a Cocktail Party Scenario in Minimally and Low Verbal Adolescents and Young Adults with Autism. Autism Research, 2020, 13, 1828-1842.	3.8	10
110	The extent to which a position-based explanation accounts for binaural release from informational masking. Journal of the Acoustical Society of America, 2008, 124, 439-449.	1.1	9
111	A "Buildup―of Speech Intelligibility in Listeners With Normal Hearing and Hearing Loss. Trends in Hearing, 2018, 22, 233121651880751.	1.3	9
112	Talker discontinuity disrupts attention to speech: Evidence from EEG and pupillometry. Brain and Language, 2021, 221, 104996.	1.6	9
113	Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis. Journal of Neuroscience, 2022, 42, 240-254.	3.6	9
114	Dissociation of perceptual judgments of "what―and "where―in an ambiguous auditory scene. Journal of the Acoustical Society of America, 2010, 128, 3041-3051.	1.1	8
115	Policing Fish at Boston's Museum of Science: Studying Audiovisual Interaction in the Wild. I-Perception, 2015, 6, 204166951559933.	1.4	8
116	Catching Audiovisual Interactions With a First-Person Fisherman Video Game. Perception, 2017, 46, 793-814.	1.2	8
117	Benefits of Beamforming With Local Spatial-Cue Preservation for Speech Localization and Segregation. Trends in Hearing, 2020, 24, 233121651989690.	1.3	8
118	Spatial alignment between faces and voices improves selective attention to audio-visual speech. Journal of the Acoustical Society of America, 2021, 150, 3085-3100.	1.1	8
119	Measuring the Perceived Content of Auditory Objects Using a Matching Paradigm. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 388-397.	1.8	7
120	Simulation of the Binaural Environmental Transfer Function for Gerbils Using a Boundary Element Method. Acta Acustica United With Acustica, 2008, 94, 310-320.	0.8	7
121	Weak neural signatures of spatial selective auditory attention in hearing-impaired listeners. Journal of the Acoustical Society of America, 2019, 146, 2577-2589.	1.1	7
122	Decoding Music Attention from "EEG Headphones― A User-Friendly Auditory Brain-Computer Interface. , 2021, , .		7
123	Temporal fine structure influences voicing confusions for consonant identification in multi-talker babble. Journal of the Acoustical Society of America, 2021, 150, 2664-2676.	1.1	7
124	Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care. Frontiers in Physiology, 2021, 12, 816701.	2.8	7
125	Defining attention from an auditory perspective. Wiley Interdisciplinary Reviews: Cognitive Science, 2023, 14, .	2.8	7
126	Short-term memory stores organized by information domain. Attention, Perception, and Psychophysics, 2016, 78, 960-970.	1.3	6

#	Article	IF	CITATIONS
127	Hemisphere-specific properties of the ventriloquism aftereffect. Journal of the Acoustical Society of America, 2019, 146, EL177-EL183.	1.1	6
128	Measuring auditory cortical responses in Tursiops truncatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 629-640.	1.6	6
129	Effects of Time Delay on Depth Perception via Head-Motion Parallax in Virtual Environment Systems. Presence: Teleoperators and Virtual Environments, 2000, 9, 638-647.	0.6	5
130	"l want to party, but my hearing aids won't let me!― Hearing Journal, 2009, 62, 10-13.	0.1	5
131	Bi-directional audiovisual influences on temporal modulation discrimination. Journal of the Acoustical Society of America, 2017, 141, 2474-2488.	1.1	5
132	A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1970-1977.	4.9	5
133	Decoding auditory attention from single-trial EEG for a high-efficiency brain-computer interface*. , 2020, 2020, 3456-3459.		5
134	Automatic processing of abstract musical tonality. Frontiers in Human Neuroscience, 2014, 8, 988.	2.0	4
135	Distractor probabilities modulate flanker task performance. Attention, Perception, and Psychophysics, 2021, 83, 866-881.	1.3	4
136	Spatial cues can support auditory figure-ground segregation. Journal of the Acoustical Society of America, 2020, 147, 3814-3818.	1.1	3
137	On the utility of perceptual anchors during pure-tone frequency discrimination. Journal of the Acoustical Society of America, 2020, 147, 371-380.	1.1	3
138	Spatial auditory display. ACM Transactions on Applied Perception, 2005, 2, 426-429.	1.9	2
139	Perceptual plasticity in spatial auditory displays. ACM Transactions on Applied Perception, 2005, 2, 418-425.	1.9	2
140	Understanding hearing impairment through model predictions of brainstem responses. Proceedings of Meetings on Acoustics, 2013, , .	0.3	2
141	Understanding informational masking from a neural perspective. Proceedings of Meetings on Acoustics, 2013, , .	0.3	2
142	Barbara Shinn-Cunningham. Current Biology, 2015, 25, R442-R444.	3.9	2
143	Comment on â€~Rapid acquisition of auditory subcortical steady state responses using multichannel recordings'. Clinical Neurophysiology, 2020, 131, 1833-1834.	1.5	2
144	Influences of modulation and spatial separation on detection of a masked broadband target. Journal of the Acoustical Society of America, 2008, 124, 2236-2250.	1.1	1

#	Article	IF	CITATIONS
145	Contour representations of sound. , 2011, , .		1
146	Switching Streams Across Ears to Evaluate Informational Masking of Speech-on-Speech. Ear and Hearing, 2020, 41, 208-216.	2.1	1
147	What's been hidden in hidden hearing loss. Neuron, 2021, 109, 909-911.	8.1	1
148	Auditory oddball responses in <i>Tursiops truncatus</i> . JASA Express Letters, 2021, 1, .	1.1	1
149	But wait, there's more! Six bilateral sensory-biased regions in human frontal cortex Journal of Vision, 2018, 18, 114.	0.3	1
150	The influence of reverberation on spatial release of masking in consonant identification. Journal of the Acoustical Society of America, 2002, 111, 2422.	1.1	1
151	Modeling Physiological and Psychophysical Responses to Precedence Effect Stimuli. , 2010, , 293-302.		1
152	Visual, spatial, or visuospatial? Disentangling sensory modality and task demands in frontal cortex Journal of Vision, 2017, 17, 1097.	0.3	1
153	Decoding auditory attention from EEG using a convolutional neural network. , 2021, 2021, 6586-6589.		1
154	Cat-astrophic effects of sudden interruptions on spatial auditory attention. Journal of the Acoustical Society of America, 2022, 151, 3219-3233.	1.1	1
155	A dynamical system model for neural tracking of speech with EEG. , 2013, , .		Ο
156	Neural correlates of auditory attention. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
157	Influences of perceptual continuity on everyday listening. Proceedings of Meetings on Acoustics, 2013, , .	0.3	Ο
158	The role of high-frequency cues for spatial hearing in rooms. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
159	Helmholtz-Rayleigh Interdisciplinary Silver Medal in Psychological and Physiological Acoustics, Speech Communication, and Architectural Acoustics 2019: Barbara G. Shinn-Cunningham. Journal of the Acoustical Society of America, 2019, 145, 1843-1846.	1.1	0
160	Editorial overview: Mammalian hearing. Current Opinion in Physiology, 2020, 18, iii-vi.	1.8	0
161	Gradual decay and sudden death of short-term memory for pitch. Journal of the Acoustical Society of America, 2021, 149, 259-270.	1.1	0
162	Calibration of Consonant Perception to Room Reverberation. Journal of Speech, Language, and Hearing Research, 2021, 64, 2956-2976.	1.6	0

#	Article	IF	CITATIONS
163	Expected and unexpected distractors in the Eriksen flanker task. Journal of Vision, 2021, 21, 2696.	0.3	ο
164	Subcortical and cortical neural correlates of individual differences in temporal auditory acuity. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
165	Space Depends On Time: Informational Asymmetries in Visual and Auditory Short-Term Memory. Journal of Vision, 2015, 15, 1054.	0.3	0
166	Frontal lobe contributions to auditory and visual working memory. Journal of Vision, 2016, 16, 765.	0.3	0
167	Memory capacity is further limited when sensory modality and task are mismatched. Journal of Vision, 2016, 16, 1056.	0.3	0
168	MVPA reveals specialization and generality of sensory-biased regions of frontal cortex. Journal of Vision, 2016, 16, 1072.	0.3	0
169	Your Brain Doesn't Know: A Visual P300 Experiment of "The Dress". Journal of Vision, 2016, 16, 222.	0.3	0
170	Modulation of alpha power reveals interaction between top-down and bottom-up effects during visual selective attention. Journal of Vision, 2017, 17, 668.	0.3	0
171	Visual-biased frontal structures are preferentially connected to multisensory working memory regions Journal of Vision, 2019, 19, 245c.	0.3	0
172	Shaping new sounds. ELife, 2020, 9, .	6.0	0