

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4835277/publications.pdf Version: 2024-02-01

XI VANC

#	Article	IF	CITATIONS
1	Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain. Ecosystems, 2022, 25, 812-827.	3.4	34
2	Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sensing of Environment, 2022, 270, 112856.	11.0	39
3	Representation of Leafâ€toâ€Canopy Radiative Transfer Processes Improves Simulation of Farâ€Red Solarâ€Induced Chlorophyll Fluorescence in the Community Land Model Version 5. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	6
4	Two for one: Partitioning CO2 fluxes and understanding the relationship between solar-induced chlorophyll fluorescence and gross primary productivity using machine learning. Agricultural and Forest Meteorology, 2022, 321, 108980.	4.8	11
5	Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops: corn and miscanthus. Agricultural and Forest Meteorology, 2022, 323, 109046.	4.8	9
6	Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content. Remote Sensing of Environment, 2022, 279, 113104.	11.0	11
7	A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 2021, 252, 112134.	11.0	39
8	Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171, 36-48.	11.1	51
9	Potential of hotspot solarâ€induced chlorophyll fluorescence for better tracking terrestrial photosynthesis. Global Change Biology, 2021, 27, 2144-2158.	9.5	35
10	Quantifying highâ€ŧemperature stress on soybean canopy photosynthesis: The unique role of sunâ€induced chlorophyll fluorescence. Global Change Biology, 2021, 27, 2403-2415.	9.5	36
11	Rapid deforestation of a coastal landscape driven by seaâ€level rise and extreme events. Ecological Applications, 2021, 31, e02339.	3.8	52
12	Recovery: Fast and Slow—Vegetation Response During the 2012–2016 California Drought. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005976.	3.0	5
13	TLSL <scp>e</scp> AF: automatic leaf angle estimates from singleâ€scan terrestrial laser scanning. New Phytologist, 2021, 232, 1876-1892.	7.3	22
14	A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt. Environmental Research Letters, 2021, 16, 124051.	5.2	25
15	Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sensing of Environment, 2020, 236, 111420.	11.0	81
16	Photosynthetic and Respiratory Acclimation of Understory Shrubs in Response to in situ Experimental Warming of a Wet Tropical Forest. Frontiers in Forests and Global Change, 2020, 3, .	2.3	21
17	On the Covariation of Chlorophyll Fluorescence and Photosynthesis Across Scales. Geophysical Research Letters, 2020, 47, e2020GL091098.	4.0	107
18	High Heterogeneity in Canopy Temperature Among Coâ€occurring Tree Species in a Temperate Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005892.	3.0	16

Xi Yang

#	Article	IF	CITATIONS
19	Mapping Temperate Forest Phenology Using Tower, UAV, and Ground-Based Sensors. Drones, 2020, 4, 56.	4.9	13
20	Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest. Remote Sensing of Environment, 2020, 241, 111728.	11.0	38
21	Reply to "Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought― Nature Communications, 2020, 11, 3401.	12.8	16
22	Radiance-based NIR _v as a proxy for GPP of corn and soybean. Environmental Research Letters, 2020, 15, 034009.	5.2	63
23	Solarâ€induced chlorophyll fluorescence and shortâ€term photosynthetic response to drought. Ecological Applications, 2020, 30, e02101.	3.8	80
24	Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 2020, 240, 111722.	11.0	83
25	Varying Contributions of Drivers to the Relationship Between Canopy Photosynthesis and Farâ€Red Sunâ€Induced Fluorescence for Two Maize Sites at Different Temporal Scales. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005051.	3.0	15
26	Gap models across micro- to mega-scales of time and space: examples of Tansley's ecosystem concept. Forest Ecosystems, 2020, 7, .	3.1	12
27	Linking soil respiration and water table depth in tropical peatlands with remotely sensed changes in water storage from the gravity recovery andÂclimate experiment. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 575-590.	2.1	8
28	Sustained Nonphotochemical Quenching Shapes the Seasonal Pattern of Solarâ€Induced Fluorescence at a Highâ€Elevation Evergreen Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2005-2020.	3.0	32
29	Tree height explains mortality risk during an intense drought. Nature Communications, 2019, 10, 4385.	12.8	191
30	Ecosystem Productivity and Water Stress in Tropical East Africa: A Case Study of the 2010–2011 Drought. Land, 2019, 8, 52.	2.9	9
31	Observing Severe Drought Influences on Ozone Air Pollution in California. Environmental Science & Technology, 2019, 53, 4695-4706.	10.0	30
32	Sunâ€Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 610-623.	3.0	138
33	Relationship of root zone soil moisture with solar-induced chlorophyll fluorescence and vegetation indices in winter wheat: A comparative study based on continuous ground-measurements. Ecological Indicators, 2018, 90, 9-17.	6.3	22
34	Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Science of the Total Environment, 2018, 625, 1208-1217.	8.0	95
35	On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sensing of Environment, 2018, 205, 276-289.	11.0	91
36	Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 2018, 216, 658-673.	11.0	149

Xi Yang

#	Article	IF	CITATIONS
37	FluoSpec 2—An Automated Field Spectroscopy System to Monitor Canopy Solar-Induced Fluorescence. Sensors, 2018, 18, 2063.	3.8	67
38	Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Global Change Biology, 2017, 23, 2874-2886.	9.5	135
39	Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Scientific Reports, 2017, 7, 1267.	3.3	64
40	Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests. New Phytologist, 2017, 214, 1033-1048.	7.3	83
41	Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests. Remote Sensing of Environment, 2016, 179, 1-12.	11.0	121
42	Emerging opportunities and challenges in phenology: a review. Ecosphere, 2016, 7, e01436.	2.2	225
43	Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sensing of Environment, 2016, 187, 145-155.	11.0	185
44	A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3436-3449.	6.3	29
45	Relationship between leaf physiologic traits and canopy color indices during the leaf expansion period in an oak forest. Ecosphere, 2015, 6, art259.	2.2	22
46	Simulations of chlorophyll fluorescence incorporated into the <scp>C</scp> ommunity <scp>L</scp> and <scp>M</scp> odel version 4. Global Change Biology, 2015, 21, 3469-3477.	9.5	95
47	Solarâ€induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 2015, 42, 2977-2987.	4.0	397
48	Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 2014, 9, e88178.	2.5	98
49	Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review. Remote Sensing, 2014, 6, 6844-6866.	4.0	183
50	Beyond leaf color: Comparing cameraâ€based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 181-191.	3.0	115
51	Evaluating Remotely Sensed Phenological Metrics in a Dynamic Ecosystem Model. Remote Sensing, 2014, 6, 4660-4686.	4.0	26
52	Regionalâ€scale phenology modeling based on meteorological records and remote sensing observations. Journal of Geophysical Research, 2012, 117, .	3.3	75
53	Validation of MODIS land surface temperature product as a drought indicator in China. , 2007, , .		0