
Astrid E Cardona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4834399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defective <scp>fractalkineâ€CX3CR1</scp> signaling aggravates neuroinflammation and affects recovery from cuprizoneâ€induced demyelination. Journal of Neurochemistry, 2022, 162, 430-443.	3.9	6
2	Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells. Stem Cell Reports, 2021, 16, 1968-1984.	4.8	12
3	Microglia. , 2020, , 995-1020.		3
4	The IL-1β phenomena in neuroinflammatory diseases. Journal of Neural Transmission, 2018, 125, 781-795.	2.8	148
5	Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy. Journal of Neuroinflammation, 2018, 15, 278.	7.2	18
6	Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Frontiers in Cellular Neuroscience, 2018, 12, 365.	3.7	44
7	Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. Journal of Neuroinflammation, 2018, 15, 173.	7.2	15
8	Region specific knock-out reveals distinct roles of chromatin modifiers in adult neurogenic niches. Cell Cycle, 2018, 17, 377-389.	2.6	9
9	CX3CL1. , 2018, , 1242-1247.		Ο
10	The metabolic regulator mTORC1 controls terminal myeloid differentiation. Science Immunology, 2017, 2, .	11.9	23
11	CX3CR1â€dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. European Journal of Immunology, 2016, 46, 1984-1996.	2.9	56
12	Neurogenic Niche Microglia Undergo Positional Remodeling and Progressive Activation Contributing to Age-Associated Reductions in Neurogenesis. Stem Cells and Development, 2016, 25, 542-555.	2.1	77
13	Fractalkine Signaling Attenuates Perivascular Clustering of Microglia and Fibrinogen Leakage during Systemic Inflammation in Mouse Models of Diabetic Retinopathy. Frontiers in Cellular Neuroscience, 2016, 10, 303.	3.7	42
14	Reduced Leukocyte Infiltration in Absence of Eosinophils Correlates with Decreased Tissue Damage and Disease Susceptibility in ΔdbIGATA Mice during Murine Neurocysticercosis. PLoS Neglected Tropical Diseases, 2016, 10, e0004787.	3.0	9
15	Epigenetic Regulation by Chromatin Activation Mark H3K4me3 in Primate Progenitor Cells within Adult Neurogenic Niche. Scientific Reports, 2015, 4, 5371.	3.3	45
16	Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. Journal of Neuroinflammation, 2015, 12, 154.	7.2	76
17	Loss of tau rescues inflammation-mediated neurodegeneration. Frontiers in Neuroscience, 2015, 9, 196.	2.8	89
18	Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina. ASN Neuro, 2015, 7, 175909141560820.	2.7	67

ASTRID E CARDONA

#	Article	IF	CITATIONS
19	The Role of Microglia in Diabetic Retinopathy. Journal of Ophthalmology, 2014, 2014, 1-15.	1.3	156
20	Isolation and Analysis of Mouse Microglial Cells. Current Protocols in Immunology, 2014, 104, 14.35.1-14.35.15.	3.6	33
21	Roles in Immune Responses. , 2014, , 115-144.		0
22	Regulation of Adaptive Immunity by the Fractalkine Receptor during Autoimmune Inflammation. Journal of Immunology, 2013, 191, 1063-1072.	0.8	76
23	Increased Accumulation of Regulatory Granulocytic Myeloid Cells in Mannose Receptor C Type 1-Deficient Mice Correlates with Protection in a Mouse Model of Neurocysticercosis. Infection and Immunity, 2013, 81, 1052-1063.	2.2	11
24	The Kinetics of Myelin Antigen Uptake by Myeloid Cells in the Central Nervous System during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 5848-5857.	0.8	50
25	The Fine Balance of Chemokines During Disease: Trafficking, Inflammation, and Homeostasis. Methods in Molecular Biology, 2013, 1013, 1-16.	0.9	29
26	Analyses of Microglia Effector Function Using CX3CR1-GFP Knock-In Mice. Methods in Molecular Biology, 2013, 1041, 307-317.	0.9	20
27	The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood. Journal of Immunology, 2012, 188, 29-36.	0.8	305
28	Isolation of Brain and Spinal Cord Mononuclear Cells Using Percoll Gradients. Journal of Visualized Experiments, 2011, , .	0.3	120
29	Analyses of phenotypic and functional characteristics of CX3CR1â€expressing natural killer cells. Immunology, 2011, 133, 62-73.	4.4	72
30	The myeloid cells of the central nervous system parenchyma. Nature, 2010, 468, 253-262.	27.8	670
31	Regulation of Tau Pathology by the Microglial Fractalkine Receptor. Neuron, 2010, 68, 19-31.	8.1	532
32	CX3CR1 Deficiency Alters Microglial Activation and Reduces Beta-Amyloid Deposition in Two Alzheimer's Disease Mouse Models. American Journal of Pathology, 2010, 177, 2549-2562.	3.8	403
33	Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice. PLoS ONE, 2010, 5, e13693.	2.5	490
34	Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. Journal of Leukocyte Biology, 2008, 84, 587-594.	3.3	93
35	Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood, 2008, 112, 256-263.	1.4	127
36	Chemokines and Chemokine Receptors: Multipurpose Players in Neuroinflammation. International Review of Neurobiology, 2007, 82, 187-204.	2.0	138

ASTRID E CARDONA

#	Article	IF	CITATIONS
37	Chemokine Receptors in Neuroinflammation. , 2007, , 351-369.		2
38	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924.	14.8	1,334
39	Isolation of murine microglial cells for RNA analysis or flow cytometry. Nature Protocols, 2006, 1, 1947-1951.	12.0	212
40	Chronic expression of monocyte chemoattractant proteinâ€1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB Journal, 2005, 19, 761-772.	0.5	124
41	CC Chemokines Mediate Leukocyte Trafficking into the Central Nervous System during Murine Neurocysticercosis: Role of $\hat{I}^3\hat{I}$ Cells in Amplification of the Host Immune Response. Infection and Immunity, 2003, 71, 2634-2642.	2.2	50
42	γĴĨ´T Cell-Deficient Mice Exhibit Reduced Disease Severity and Decreased Inflammatory Response in the Brain in Murine Neurocysticercosis. Journal of Immunology, 2002, 169, 3163-3171.	0.8	46
43	Leishmania donovani: Evolution and Architecture of the Splenic Cellular Immune Response Related to Control of Infection. Experimental Parasitology, 2001, 99, 17-25.	1.2	50