List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4834173/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Poultry manureshed management: Opportunities and challenges for a vertically integrated industry.<br>Journal of Environmental Quality, 2022, 51, 540-551.                                                  | 2.0 | 15        |
| 2  | Minimum dataset and metadata guidelines for soilâ€ŧest correlation and calibration research. Soil<br>Science Society of America Journal, 2022, 86, 19-33.                                                  | 2.2 | 13        |
| 3  | The social networks of manureshed management. Journal of Environmental Quality, 2022, 51, 566-579.                                                                                                         | 2.0 | 5         |
| 4  | Culturable antibiotic resistant fecal coliform bacteria in soil and surface runoff following liquid dairy manure surface application and subsurface injection. Journal of Environmental Quality, 2022, , . | 2.0 | 1         |
| 5  | Opportunities to implement manureshed management in the Iowa, North Carolina, and Pennsylvania<br>swine industry. Journal of Environmental Quality, 2022, 51, 510-520.                                     | 2.0 | 6         |
| 6  | Long term agroecosystem research experimental watershed network. Hydrological Processes, 2022, 36, .                                                                                                       | 2.6 | 1         |
| 7  | Challenges and opportunities for manureshed management across U.S. dairy systems: Case studies from four regions. Journal of Environmental Quality, 2022, 51, 521-539.                                     | 2.0 | 6         |
| 8  | Recycling nutrients in the beef supply chain through circular manuresheds: Data to assess tradeoffs.<br>Journal of Environmental Quality, 2022, 51, 494-509.                                               | 2.0 | 6         |
| 9  | Applying the NWS's Distributed Hydrologic Model to Short-Range Forecasting of Quickflow in the<br>Mahantango Creek Watershed. Journal of Hydrometeorology, 2022, 23, 1257-1280.                            | 1.9 | 2         |
| 10 | Envisioning the manureshed: Toward comprehensive integration of modern crop and animal production. Journal of Environmental Quality, 2022, 51, 481-493.                                                    | 2.0 | 8         |
| 11 | The USDAâ€ARS Experimental Watershed Network: Evolution, Lessons Learned, Societal Benefits, and<br>Moving Forward. Water Resources Research, 2021, 57, e2019WR026473.                                     | 4.2 | 11        |
| 12 | The Agricultural Conservation Planning Framework: Opportunities and challenges in the eastern<br>United States. Agricultural and Environmental Letters, 2021, 6, e20054.                                   | 1.2 | 2         |
| 13 | Transforming the Culture of Data Management in a Federal Science Agency, One Client at a Time. CSA<br>News, 2021, 66, 44-47.                                                                               | 0.0 | 0         |
| 14 | One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed. Journal of Environmental Quality, 2021, 50, 529-546.                  | 2.0 | 38        |
| 15 | Nitrogen dynamics after low-emission applications of dairy slurry or fertilizer on perennial grass: a<br>long term field study employing natural abundance of δ15N. Plant and Soil, 2021, 465, 415-430.    | 3.7 | 3         |
| 16 | Estimating dissolved phosphorus losses from legacy sources in pastures: The limits of soil tests and smallâ€scale rainfall simulators. Journal of Environmental Quality, 2021, 50, 1042-1062.              | 2.0 | 2         |
| 17 | Land use change and collaborative manureshed management in New Mexico. Journal of Environmental Quality, 2021, , .                                                                                         | 2.0 | 6         |
| 18 | Environmental assessment of United States dairy farms. Journal of Cleaner Production, 2021, 315, 128153.                                                                                                   | 9.3 | 32        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Partnerships for Data Innovations (PDI): Facilitating data stewardship and catalyzing research engagement in the digital age. Agricultural and Environmental Letters, 2021, 6, e20055.                  | 1.2 | 5         |
| 20 | Development of a soil test correlation and calibration database for the USA. Agricultural and Environmental Letters, 2021, 6, .                                                                             | 1.2 | 5         |
| 21 | Regional environmental assessment of dairy farms. Journal of Dairy Science, 2020, 103, 3275-3288.                                                                                                           | 3.4 | 21        |
| 22 | Pilot-Scale Investigation of Phosphorus Removal from Swine Manure by the MAnure PHosphorus EXtraction (MAPHEX) System. Applied Engineering in Agriculture, 2020, 36, 525-531.                               | 0.7 | 3         |
| 23 | Manuresheds: Advancing nutrient recycling in US agriculture. Agricultural Systems, 2020, 182, 102813.                                                                                                       | 6.1 | 75        |
| 24 | Comparative analysis of water budgets across the U.S. long-term agroecosystem research network.<br>Journal of Hydrology, 2020, 588, 125021.                                                                 | 5.4 | 24        |
| 25 | Addressing the spatial disconnect between nationalâ€scale total maximum daily loads and localized land management decisions. Journal of Environmental Quality, 2020, 49, 613-627.                           | 2.0 | 16        |
| 26 | An environmental assessment of grass-based dairy production in the northeastern United States.<br>Agricultural Systems, 2020, 184, 102887.                                                                  | 6.1 | 11        |
| 27 | FRST: A national soil testing database to improve fertility recommendations. Agricultural and Environmental Letters, 2020, 5, e20008.                                                                       | 1.2 | 13        |
| 28 | Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 2019, 48, 1191-1203.                                                           | 2.0 | 48        |
| 29 | Impacts of Cover Crops and Crop Residues on Phosphorus Losses in Cold Climates: A Review. Journal of Environmental Quality, 2019, 48, 850-868.                                                              | 2.0 | 62        |
| 30 | Managing crop nutrients to achieve water quality goals. Journal of Soils and Water Conservation, 2019, 74, 91A-101A.                                                                                        | 1.6 | 14        |
| 31 | Management characteristics of Pennsylvania dairy farms. Applied Animal Science, 2019, 35, 325-338.                                                                                                          | 1.2 | 20        |
| 32 | Varying Influence of Dairy Manure Injection on Phosphorus Loss in Runoff over Four Years. Journal<br>of Environmental Quality, 2019, 48, 450-458.                                                           | 2.0 | 11        |
| 33 | <i>Phosphorus mirabilis</i> : Illuminating the Past and Future of Phosphorus Stewardship. Journal of<br>Environmental Quality, 2019, 48, 1127-1132.                                                         | 2.0 | 13        |
| 34 | Urea Fluctuations in Stream Baseflow across Land Cover Gradients and Seasons in a Coastal Plain<br>River System. Journal of the American Water Resources Association, 2019, 55, 228-246.                    | 2.4 | 4         |
| 35 | Load-discharge relationships reveal the efficacy of manure application practices on phosphorus and total solids losses from agricultural fields. Agriculture, Ecosystems and Environment, 2019, 272, 19-28. | 5.3 | 10        |
|    |                                                                                                                                                                                                             |     |           |

Reducing Unintended Consequences of Agricultural Phosphorus. , 2019, 103, 33-35.

5

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A review of regulations and guidelines related to winter manure application. Ambio, 2018, 47, 657-670.                                                                                                                          | 5.5 | 45        |
| 38 | Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochemical Transactions, 2018, 19, 7.                                                                                                    | 0.7 | 28        |
| 39 | Consistency of the Threshold Phosphorus Saturation Ratio across a Wide Geographic Range of Acid<br>Soils. , 2018, 1, 1-8.                                                                                                       |     | 35        |
| 40 | Celebrating the 350th Anniversary of Phosphorus Discovery: A Conundrum of Deficiency and Excess.<br>Journal of Environmental Quality, 2018, 47, 774-777.                                                                        | 2.0 | 48        |
| 41 | Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an<br>agricultural catchment of the Chesapeake Bay watershed, USA. Science of the Total Environment, 2018,<br>637-638, 1443-1454.  | 8.0 | 57        |
| 42 | Versatility of the MAnure PHosphorus EXtraction (MAPHEX) System in Removing Phosphorus, Odor,<br>Microbes, and Alkalinity from Dairy Manures: A Four-Farm Case Study. Applied Engineering in<br>Agriculture, 2018, 34, 567-572. | 0.7 | 7         |
| 43 | Waterâ€Extractable Phosphorus in Animal Manure and Manure Compost: Quantities, Characteristics, and Temporal Changes. Journal of Environmental Quality, 2018, 47, 471-479.                                                      | 2.0 | 21        |
| 44 | Short communication: Identifying challenges and opportunities for improved nutrient management<br>through the USDA's Dairy Agroecosystem Working Group. Journal of Dairy Science, 2018, 101, 6632-6641.                         | 3.4 | 24        |
| 45 | Shortâ€ŧerm Forecasting Tools for Agricultural Nutrient Management. Journal of Environmental<br>Quality, 2017, 46, 1257-1269.                                                                                                   | 2.0 | 20        |
| 46 | The Persistent Environmental Relevance of Soil Phosphorus Sorption Saturation. Current Pollution Reports, 2017, 3, 141-150.                                                                                                     | 6.6 | 57        |
| 47 | Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA. Journal of Environmental Quality, 2017, 46, 1250-1256.                                                                                                    | 2.0 | 39        |
| 48 | Managing Surface Water Inputs to Reduce Phosphorus Loss from Cranberry Farms. Journal of<br>Environmental Quality, 2017, 46, 1472-1479.                                                                                         | 2.0 | 3         |
| 49 | Elements of Precision Manure Management. Agronomy, 2017, , .                                                                                                                                                                    | 0.2 | Ο         |
| 50 | Temperature and Nitrogen Effects on Phosphorus Uptake by Agricultural Streamâ€Bed Sediments.<br>Journal of Environmental Quality, 2017, 46, 295-301.                                                                            | 2.0 | 15        |
| 51 | Hydrology and Soil Manipulations of Ironâ€Rich Ditch Mesocosms Provide Little Evidence of<br>Phosphorus Capture within the Profile. Journal of Environmental Quality, 2017, 46, 596-604.                                        | 2.0 | 1         |
| 52 | Urea Release by Intermittently Saturated Sediments from a Coastal Agricultural Landscape. Journal of<br>Environmental Quality, 2017, 46, 302-310.                                                                               | 2.0 | 10        |
| 53 | Seasonal Manure Application Timing and Storage Effects on Field―and Watershedâ€Level Phosphorus<br>Losses. Journal of Environmental Quality, 2017, 46, 1403-1412.                                                               | 2.0 | 31        |
| 54 | Declining Atmospheric Sulfate Deposition in an Agricultural Watershed in Central Pennsylvania, USA.<br>Agricultural and Environmental Letters, 2016, 1, 160039.                                                                 | 1.2 | 7         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Suburface application enhances benefits of manure redistribution. Crops & Soils, 2016, 49, 48-51.                                                                                            | 0.2 | 1         |
| 56 | Estrogen Transport in Surface Runoff from Agricultural Fields Treated with Two Application<br>Methods of Dairy Manure. Journal of Environmental Quality, 2016, 45, 2007-2015.                | 2.0 | 15        |
| 57 | Distant Views and Local Realities: The Limits of Global Assessments to Restore the Fragmented Phosphorus Cycle. Agricultural and Environmental Letters, 2016, 1, 160024.                     | 1.2 | 32        |
| 58 | Reducing Phosphorus Runoff and Leaching from Poultry Litter with Alum: Twenty‥ear Small Plot and<br>Pairedâ€Watershed Studies. Journal of Environmental Quality, 2016, 45, 1413-1420.        | 2.0 | 21        |
| 59 | Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT. Journal of Environmental Quality, 2016, 45, 1215-1225.                                                                    | 2.0 | 42        |
| 60 | Subsurface Application Enhances Benefits of Manure Redistribution. Agricultural and Environmental<br>Letters, 2016, 1, 150003.                                                               | 1.2 | 15        |
| 61 | Impact of Irrigation, Nitrogen Fertilization, and Spatial Management on Maize. Agronomy Journal, 2016,<br>108, 1794-1804.                                                                    | 1.8 | 7         |
| 62 | Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrological Processes, 2016, 30, 4633-4643. | 2.6 | 20        |
| 63 | A Protocol for Collecting and Constructing Soil Core Lysimeters. Journal of Visualized Experiments, 2016, , .                                                                                | 0.3 | 1         |
| 64 | Phosphorus Transport in Agricultural Subsurface Drainage: A Review. Journal of Environmental<br>Quality, 2015, 44, 467-485.                                                                  | 2.0 | 358       |
| 65 | Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model.<br>Hydrological Processes, 2015, 29, 588-601.                                               | 2.6 | 54        |
| 66 | Phosphorus Fate, Management, and Modeling in Artificially Drained Systems. Journal of Environmental<br>Quality, 2015, 44, 460-466.                                                           | 2.0 | 85        |
| 67 | The Pivotal Role of Phosphorus in a Resilient Water-Energy-Food Security Nexus. Journal of Environmental Quality, 2015, 44, 1049-1062.                                                       | 2.0 | 125       |
| 68 | Phosphorus Leaching from Agricultural Soils of the Delmarva Peninsula, USA. Journal of<br>Environmental Quality, 2015, 44, 524-534.                                                          | 2.0 | 44        |
| 69 | Managing Agricultural Phosphorus for Environmental Protection. Agronomy, 2015, , 1021-1068.                                                                                                  | 0.2 | 18        |
| 70 | Chemical and Isotopic Tracers Illustrate Pathways of Nitrogen Loss in Cranberry Floodwaters.<br>Journal of Environmental Quality, 2015, 44, 1326-1332.                                       | 2.0 | 6         |
| 71 | Phosphorus and Nitrogen Leaching Before and After Tillage and Urea Application. Journal of Environmental Quality, 2015, 44, 560-571.                                                         | 2.0 | 15        |
| 72 | Implementing agricultural phosphorus science and management to combat eutrophication. Ambio, 2015, 44, 297-310.                                                                              | 5.5 | 164       |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Phosphorus and nitrogen losses from poultry litter stacks and leaching through soils. Nutrient<br>Cycling in Agroecosystems, 2015, 103, 101-114.                                                     | 2.2  | 4         |
| 74 | A Protocol for Conducting Rainfall Simulation to Study Soil Runoff. Journal of Visualized Experiments, 2014, , .                                                                                     | 0.3  | 12        |
| 75 | Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils. Nutrient<br>Cycling in Agroecosystems, 2013, 96, 133-147.                                                        | 2.2  | 27        |
| 76 | Water Quality Remediation Faces Unprecedented Challenges from "Legacy Phosphorus―<br>Environmental Science & Technology, 2013, 47, 8997-8998.                                                        | 10.0 | 228       |
| 77 | Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water<br>Quality Impairment. Journal of Environmental Quality, 2013, 42, 1308-1326.                        | 2.0  | 706       |
| 78 | Low-Disturbance Manure Incorporation Effects on Ammonia and Nitrate Loss. Journal of Environmental Quality, 2012, 41, 928-937.                                                                       | 2.0  | 60        |
| 79 | Using Flue Gas Desulfurization Gypsum to Remove Dissolved Phosphorus from Agricultural Drainage<br>Waters. Journal of Environmental Quality, 2012, 41, 664-671.                                      | 2.0  | 65        |
| 80 | U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed,<br>Pennsylvania, United States: Physiography and history. Water Resources Research, 2011, 47, .             | 4.2  | 42        |
| 81 | U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed,<br>Pennsylvania, United States: Longâ€ŧerm precipitation database. Water Resources Research, 2011, 47, .    | 4.2  | 7         |
| 82 | U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed,<br>Pennsylvania, United States: Longâ€ŧerm stream discharge database. Water Resources Research, 2011, 47, . | 4.2  | 9         |
| 83 | U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed,<br>Pennsylvania, United States: Longâ€ŧerm water quality database. Water Resources Research, 2011, 47, .    | 4.2  | 11        |
| 84 | Manure Application Technology in Reduced Tillage and Forage Systems: A Review. Journal of Environmental Quality, 2011, 40, 292-301.                                                                  | 2.0  | 86        |
| 85 | Novel Manure Management Technologies in Noâ€īill and Forage Systems: Introduction to the Special Series. Journal of Environmental Quality, 2011, 40, 287-291.                                        | 2.0  | 24        |
| 86 | Soil controls of phosphorus in runoff: Management barriers and opportunities. Canadian Journal of<br>Soil Science, 2011, 91, 329-338.                                                                | 1.2  | 154       |
| 87 | Effect of dairy manure slurry application in a no-till system on phosphorus runoff. Nutrient Cycling in Agroecosystems, 2011, 90, 201-212.                                                           | 2.2  | 21        |
| 88 | Managing agricultural phosphorus for water quality protection: principles for progress. Plant and Soil, 2011, 349, 169-182.                                                                          | 3.7  | 226       |
| 89 | Effect of Coal Combustion By-products on Phosphorus Runoff from a Coastal Plain Soil.<br>Communications in Soil Science and Plant Analysis, 2011, 42, 778-789.                                       | 1.4  | 4         |
| 90 | Critical source area management of agricultural phosphorus: experiences, challenges and opportunities. Water Science and Technology, 2011, 64, 945-952.                                              | 2.5  | 87        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Phosphorus Runoff Losses from Subsurfaceâ€Applied Poultry Litter on Coastal Plain Soils. Journal of<br>Environmental Quality, 2011, 40, 412-420.                                                         | 2.0 | 16        |
| 92  | A Phosphorus Transport Study: Influence of Poultry Litter Application Method on Leaching. , 2010, , .                                                                                                    |     | 1         |
| 93  | Subsurface Manure Application to Reduce Ammonia Emissions. , 2010, , .                                                                                                                                   |     | 0         |
| 94  | Using Rare Earth Elements to Control Phosphorus and Track Manure in Runoff. Journal of Environmental Quality, 2010, 39, 1028-1035.                                                                       | 2.0 | 20        |
| 95  | Occurrence of Arsenic and Phosphorus in Ditch Flow from Litterâ€amended Soils and Barn Areas.<br>Journal of Environmental Quality, 2010, 39, 2080-2088.                                                  | 2.0 | 28        |
| 96  | Runoff Losses of Sediment and Phosphorus from Noâ€Till and Cultivated Soils Receiving Dairy Manure.<br>Journal of Environmental Quality, 2010, 39, 1762-1770.                                            | 2.0 | 31        |
| 97  | Effects of Hydrology and Field Management on Phosphorus Transport in Surface Runoff. Journal of<br>Environmental Quality, 2009, 38, 2273-2284.                                                           | 2.0 | 84        |
| 98  | Evaluating the Success of Phosphorus Management from Field to Watershed. Journal of<br>Environmental Quality, 2009, 38, 1981-1988.                                                                       | 2.0 | 119       |
| 99  | Factors influencing surface runoff generation from two agricultural hillslopes in central<br>Pennsylvania. Hydrological Processes, 2009, 23, 1295-1312.                                                  | 2.6 | 64        |
| 100 | Phosphorus runoff from a phosphorus deficient soil under common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) genotypes with contrasting root architecture. Plant and Soil, 2009, 317, 1-16. | 3.7 | 23        |
| 101 | Application of manure to no-till soils: phosphorus losses by sub-surface and surface pathways.<br>Nutrient Cycling in Agroecosystems, 2009, 84, 215-227.                                                 | 2.2 | 121       |
| 102 | Impact of Dredging on Phosphorus Transport in Agricultural Drainage Ditches of the Atlantic Coastal Plain <sup>1</sup> . Journal of the American Water Resources Association, 2008, 44, 1500-1511.       | 2.4 | 18        |
| 103 | Integrating Contributing Areas and Indexing Phosphorus Loss from Agricultural Watersheds. Journal of Environmental Quality, 2008, 37, 1488-1496.                                                         | 2.0 | 35        |
| 104 | Field Olfactometry Assessment of Dairy Manure Land Application Methods. , 2008, , .                                                                                                                      |     | 0         |
| 105 | Selection of a Waterâ€Extractable Phosphorus Test for Manures and Biosolids as an Indicator of Runoff Loss Potential. Journal of Environmental Quality, 2007, 36, 1357-1367.                             | 2.0 | 90        |
| 106 | Spatial Variation of Soil Phosphorus within a Drainage Ditch Network. Journal of Environmental<br>Quality, 2007, 36, 1096-1104.                                                                          | 2.0 | 21        |
| 107 | Vertical Distribution of Phosphorus in Agricultural Drainage Ditch Soils. Journal of Environmental<br>Quality, 2007, 36, 1895-1903.                                                                      | 2.0 | 12        |
| 108 | Environmental and Economic Comparisons of Manure Application Methods on Dairy Farms. , 2007, , .                                                                                                         |     | 2         |

Environmental and Economic Comparisons of Manure Application Methods on Dairy Farms. , 2007, , . 108

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Phosphorus leaching through intact soil cores as influenced by type and duration of manure application. Nutrient Cycling in Agroecosystems, 2007, 77, 269-281.                                                                         | 2.2 | 34        |
| 110 | Role of Rainfall Intensity and Hydrology in Nutrient Transport via Surface Runoff. Journal of<br>Environmental Quality, 2006, 35, 1248-1259.                                                                                           | 2.0 | 160       |
| 111 | Evaluating the Influence of Storage Time, Sampleâ€handling Method, and Filter Paper on the<br>Measurement of Waterâ€Extractable Phosphorus in Animal Manures. Communications in Soil Science<br>and Plant Analysis, 2006, 37, 451-463. | 1.4 | 3         |
| 112 | PHOSPHORUS LEACHING THROUGH INTACT SOIL COLUMNS BEFORE AND AFTER POULTRY MANURE APPLICATION. Soil Science, 2005, 170, 153-166.                                                                                                         | 0.9 | 45        |
| 113 | Freeze-Thaw Effects on Phosphorus Loss in Runoff from Manured and Catch-Cropped Soils. Journal of Environmental Quality, 2005, 34, 2301-2309.                                                                                          | 2.0 | 159       |
| 114 | Development of a Water-Extractable Phosphorus Test for Manure. Soil Science Society of America<br>Journal, 2005, 69, 695-700.                                                                                                          | 2.2 | 41        |
| 115 | Survey of Water-Extractable Phosphorus in Livestock Manures. Soil Science Society of America<br>Journal, 2005, 69, 701-708.                                                                                                            | 2.2 | 122       |
| 116 | Response to "Comments on â€~Amounts, Forms, and Solubility of Phosphorus in Soils Receiving<br>Manure'― Soil Science Society of America Journal, 2005, 69, 1355-1355.                                                                  | 2.2 | 2         |
| 117 | Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 2004, 68, 914-923.                                                                                                   | 2.2 | 74        |
| 118 | Evaluation of Phosphorus Transport in Surface Runoff from Packed Soil Boxes. Journal of Environmental Quality, 2004, 33, 1413.                                                                                                         | 2.0 | 90        |
| 119 | Assessment of best management practices to minimise the runoff of manureâ€borne phosphorus in the United States. New Zealand Journal of Agricultural Research, 2004, 47, 461-477.                                                      | 1.6 | 30        |
| 120 | Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure. Soil Science Society of<br>America Journal, 2004, 68, 2048-2057.                                                                                               | 2.2 | 223       |
| 121 | Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 2004, 68, 914.                                                                                                       | 2.2 | 20        |
| 122 | Effect of Rainfall Simulator and Plot Scale on Overland Flow and Phosphorus Transport. Journal of Environmental Quality, 2003, 32, 2172-2179.                                                                                          | 2.0 | 159       |
| 123 | Sources of Uncertainty Affecting Soil Organic Carbon Estimates in Northern New York. Soil Science<br>Society of America Journal, 2003, 67, 1206-1212.                                                                                  | 2.2 | 32        |
| 124 | Effect of Broadcast Manure on Runoff Phosphorus Concentrations over Successive Rainfall Events.<br>Journal of Environmental Quality, 2003, 32, 1072-1081.                                                                              | 2.0 | 174       |
| 125 | Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils. Soil<br>Science Society of America Journal, 2003, 67, 215-224.                                                                            | 2.2 | 59        |
| 126 | Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils. Soil<br>Science Society of America Journal, 2003, 67, 215.                                                                                | 2.2 | 18        |

| #   | ARTICLE                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Estimating soil phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis, 2002, 33, 1825-1839.                      | 1.4 | 110       |
| 128 | Effect of Mineral and Manure Phosphorus Sources on Runoff Phosphorus. Journal of Environmental Quality, 2002, 31, 2026-2033.                                     | 2.0 | 263       |
| 129 | ASSESSING THE EFFICACY OF ALTERNATIVE PHOSPHORUS SORBING SOIL AMENDMENTS. Soil Science, 2002, 167, 539-547.                                                      | 0.9 | 62        |
| 130 | Measuring Waterâ€Extractable Phosphorus in Manure as an Indicator of Phosphorus in Runoff. Soil<br>Science Society of America Journal, 2002, 66, 2009-2015.      | 2.2 | 165       |
| 131 | INNOVATIVE MANAGEMENT OF AGRICULTURAL PHOSPHORUS TO PROTECT SOIL AND WATER RESOURCES.<br>Communications in Soil Science and Plant Analysis, 2001, 32, 1071-1100. | 1.4 | 54        |
| 132 | Assessing Site Vulnerability to Phosphorus Loss in an Agricultural Watershed. Journal of<br>Environmental Quality, 2001, 30, 2026-2036.                          | 2.0 | 148       |
| 133 | Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil, 2001, 237, 287-307.                                   | 3.7 | 327       |
| 134 | Interlaboratory comparison of soil phosphorus extracted by various soil test methods.<br>Communications in Soil Science and Plant Analysis, 2001, 32, 2325-2345. | 1.4 | 52        |
| 135 | USING SOIL PHOSPHORUS BEHAVIOR TO IDENTIFY ENVIRONMENTAL THRESHOLDS. Soil Science, 2000, 165, 943-950.                                                           | 0.9 | 73        |
| 136 | Elements of Precision Manure Management. Agronomy, 0, , 165-192.                                                                                                 | 0.2 | 6         |
| 137 | Managing Animal Manure to Minimize Phosphorus Losses from Land to Water. ASA Special Publication, 0, , 201-228.                                                  | 0.8 | 6         |