
Maria Flavia Di Renzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4834152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. Npj Systems Biology and Applications, 2021, 7, 1.	3.0	53
2	Patient-Derived Cancer Models. Cancers, 2020, 12, 3779.	3.7	9
3	Translational Research in Ovarian Cancer. Cancers, 2020, 12, 3676.	3.7	1
4	PIK3R1W624R Is an Actionable Mutation in High Grade Serous Ovarian Carcinoma. Cells, 2020, 9, 442.	4.1	7
5	TOP2A as marker of response to pegylated lyposomal doxorubicin (PLD) in epithelial ovarian cancers. Journal of Ovarian Research, 2019, 12, 17.	3.0	20
6	Heat-shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF. Molecular Oncology, 2017, 11, 599-611.	4.6	32
7	The integrin-linked kinase-associated phosphatase (ILKAP) is a regulatory hub of ovarian cancer cell susceptibility to platinum drugs. European Journal of Cancer, 2016, 60, 59-68.	2.8	10
8	Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget, 2016, 7, 712-728.	1.8	13
9	Xenopatients show the need for precision medicine approach to chemotherapy in ovarian cancer. Oncotarget, 2016, 7, 26181-26191.	1.8	15
10	Everolimus induces Met inactivation by disrupting the FKBP12/Met complex. Oncotarget, 2016, 7, 40073-40084.	1.8	15
11	TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin. Gynecologic Oncology, 2015, 138, 627-633.	1.4	43
12	Heat Shock Protein 27 (HSP27, HSPB1) Is Up-Regulated by Targeted Agents and Confers Resistance to Both Targeted Drugs and Chemotherapeutics. Heat Shock Proteins, 2015, , 17-25.	0.2	1
13	CD99 Drives Terminal Differentiation of Osteosarcoma Cells by Acting as a Spatial Regulator of ERK 1/2. Journal of Bone and Mineral Research, 2014, 29, 1295-1309.	2.8	37
14	HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. International Journal of Cancer, 2014, 134, 1289-1299.	5.1	44
15	PIM2 Kinase Is Induced by Cisplatin in Ovarian Cancer Cells and Limits Drug Efficacy. Journal of Proteome Research, 2014, 13, 4970-4982.	3.7	22
16	Heatâ€shock protein 27 (HSP27, HSPB1) is upâ€regulated by MET kinase inhibitors and confers resistance to METâ€targeted therapy. FASEB Journal, 2014, 28, 4055-4067.	0.5	34
17	The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget, 2014, 5, 5992-6002.	1.8	17
18	Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas. BMC Veterinary Research, 2013, 9, 80.	1.9	15

#	Article	IF	CITATIONS
19	IRF-1 expression is induced by cisplatin in ovarian cancer cells and limits drug effectiveness. European Journal of Cancer, 2013, 49, 964-973.	2.8	29
20	AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Experimental Cell Research, 2013, 319, 2627-2636.	2.6	21
21	Abstract B28: The stress phenotype makes ovarian cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. , 2013, , .		0
22	Abstract C131: HSP27 is necessary in cells showing oncogene hyper-activation , 2013, , .		0
23	The cellular apoptosis susceptibility <i>CAS/CSE1L</i> gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB Journal, 2012, 26, 2446-2456.	0.5	34
24	Cells Lacking the Fumarase Tumor Suppressor Are Protected from Apoptosis through a Hypoxia-Inducible Factor-Independent, AMPK-Dependent Mechanism. Molecular and Cellular Biology, 2012, 32, 3081-3094.	2.3	29
25	Daily administration of low molecular weight heparin increases Hepatocyte Growth Factor serum levels in gynaecological patients: pharmacokinetic parameters and clinical implications. BMC Research Notes, 2012, 5, 517.	1.4	3
26	The <i>MET</i> oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. Journal of Bone and Mineral Research, 2012, 27, 1322-1334.	2.8	27
27	Abstract B42: Heat Shock Protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibition and limits the effectiveness of inhibitors. Clinical Cancer Research, 2012, 18, B42-B42.	7.0	0
28	Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer: Response to Met Inhibition in Patient Xenografts and Pathologic Correlations. Clinical Cancer Research, 2011, 17, 3146-3156.	7.0	113
29	Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis. FASEB Journal, 2010, 24, 2680-2688.	0.5	12
30	Expression Profiling in Progressive Stages of Fumarate-Hydratase Deficiency: The Contribution of Metabolic Changes to Tumorigenesis. Cancer Research, 2010, 70, 9153-9165.	0.9	63
31	Abstract 215: CSE1L as a potential target to sensitize ovarian cancer cells to cisplatin. , 2010, , .		0
32	ERα as ligand-independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7420-7425.	7.1	43
33	<i>met</i> oncogene activation qualifies spontaneous canine osteosarcoma as a suitable preâ€clinical model of human osteosarcoma. Journal of Pathology, 2009, 218, 399-408.	4.5	34
34	A cancerâ€predisposing "hot spot―mutation of the fumarase gene creates a dominant negative protein. International Journal of Cancer, 2008, 122, 947-951.	5.1	20
35	A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging. PLoS ONE, 2008, 3, e1828.	2.5	38
36	Caveolin-1 Reduces Osteosarcoma Metastases by Inhibiting c-Src Activity and Met Signaling. Cancer Research, 2007, 67, 7675-7685.	0.9	81

MARIA FLAVIA DI RENZO

#	Article	IF	CITATIONS
37	The Therapeutic Potential of Hepatocyte Growth Factor to Sensitize Ovarian Cancer Cells to Cisplatin and Paclitaxel In vivo. Clinical Cancer Research, 2007, 13, 2191-2198.	7.0	29
38	A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene, 2007, 26, 1078-1087.	5.9	103
39	p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis. Biochemical and Biophysical Research Communications, 2006, 347, 781-790.	2.1	25
40	Hepatocyte growth factor installs a survival platform for colorectal cancer cell invasive growth and overcomes p38 MAPK-mediated apoptosis. Cellular Signalling, 2006, 18, 1967-1976.	3.6	27
41	p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. International Journal of Cancer, 2006, 118, 2981-2990.	5.1	38
42	MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Research, 2006, 66, 4750-4757.	0.9	123
43	Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. Molecular Cancer Therapeutics, 2006, 5, 1126-1135.	4.1	27
44	Mitochondrial succinate is instrumental for HIF1α nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Human Molecular Genetics, 2005, 14, 3263-3269.	2.9	146
45	Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Research, 2005, 65, 907-12.	0.9	72
46	Hepatocyte Growth Factor Sensitizes Human Ovarian Carcinoma Cell Lines to Paclitaxel and Cisplatin. Cancer Research, 2004, 64, 1744-1750.	0.9	47
47	Truncated RON Tyrosine Kinase Drives Tumor Cell Progression and Abrogates Cell-Cell Adhesion Through E-Cadherin Transcriptional Repression. Cancer Research, 2004, 64, 5154-5161.	0.9	96
48	The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness. Experimental Cell Research, 2003, 288, 382-389.	2.6	104
49	Amplification of repeat-containing transcribed sequences (ARTS): a transcriptome fingerprinting strategy to detect functionally relevant microsatellite mutations in cancer. Nucleic Acids Research, 2003, 31, 33e-33.	14.5	14
50	Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB Journal, 2003, 17, 1162-1164.	0.5	72
51	Deletion in a (T)8 microsatellite abrogates expression regulation by 3'-UTR. Nucleic Acids Research, 2003, 31, 6561-6569.	14.5	30
52	Feline STK gene expression in mammary carcinomas. Oncogene, 2002, 21, 1785-1790.	5.9	28
53	Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Research, 2002, 62, 7025-30.	0.9	92
54	Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene, 2000, 19, 1547-1555.	5.9	314

#	Article	IF	CITATIONS
55	Expression of Hepatocyte Growth Factor (HGF) and its Receptor (MET) in Medullary Carcinoma of the Thyroid. Endocrine Pathology, 2000, 11, 19-30.	9.0	72
56	Overexpression of the RON gene in human breast carcinoma. Oncogene, 1998, 16, 2927-2933.	5.9	190
57	Detection ofMET oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. European Archives of Oto-Rhino-Laryngology, 1997, 254, S138-S143.	1.6	42
58	Control of invasive growth by the HGF receptor family. Journal of Cellular Physiology, 1997, 173, 183-186.	4.1	35
59	Negative/Low Expression of the Met/Hepatocyte Growth Factor Receptor Identifies Papillary Thyroid Carcinomas with High Risk of Distant Metastases. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2322-2328.	3.6	63
60	Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. British Journal of Cancer, 1996, 74, 1862-1868.	6.4	191
61	Overexpression of the met/HGF receptor in renal cell carcinomas. , 1996, 69, 212-217.		127
62	Overexpression of the C-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. Journal of Endocrinological Investigation, 1995, 18, 134-139.	3.3	63
63	Overexpression of theMET/HGF receptor in ovarian cancer. International Journal of Cancer, 1994, 58, 658-662.	5.1	208
64	Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. British Journal of Cancer, 1993, 68, 746-750.	6.4	184
65	Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth Journal of Cell Biology, 1992, 119, 629-641.	5.2	1,282
66	Constitutively activatedneu oncoprotein tyrosine kinase interferes with growth factor-induced signals for gene activation. Journal of Cellular Biochemistry, 1991, 45, 69-81.	2.6	7
67	Tyrosine Kinase and Control of Cell Proliferation. The American Review of Respiratory Disease, 1990, 142, S16-S19.	2.9	13
68	Lipid characteristics of RSV-transformed Balb/c 3T3 cell lines with different spontaneous metastatic potentials. Lipids, 1989, 24, 685-690.	1.7	21
69	Tyrosine kinase receptor indistinguishable from the c-met protein. Nature, 1989, 339, 155-156.	27.8	465
70	Identification of a protein cross-reacting with anti-phosphotyrosine antibodies in yeast insoluble cytoplasmic matrices. Biochemical and Biophysical Research Communications, 1989, 160, 887-896.	2.1	2
71	Evidence for autocrine activation of a tyrosine kinase in a human gastric carcinoma cell line. Journal of Cellular Biochemistry, 1988, 38, 229-236.	2.6	15
72	p145, a protein with associated tyrosine kinase activity in a human gastric carcinoma cell line Molecular and Cellular Biology, 1988, 8, 3510-3517.	2.3	78

Maria Flavia Di Renzo

#	Article	IF	CITATIONS
73	High Chemotactic Motility and Growth in Hard Agar of a Variant of RSV-Transformed Fibroblasts are Lost in Late Passages. Tumori, 1988, 74, 1-6.	1.1	2
74	Protein Tyrosine Kinases Associated with Human Malignancies. Annals of the New York Academy of Sciences, 1987, 511, 256-261.	3.8	14
75	Proteins phosphorylated on tyrosine as markers of human tumor cell lines. International Journal of Cancer, 1987, 39, 482-487.	5.1	18
76	Changeable chemotactic response of metastatic variant lines of RSV-transformed mouse fibroblasts. Cell Biology International Reports, 1986, 10, 191-191.	0.6	0
77	Protein phosphorylation at tyrosine residues INv-abl transformed mouse lymphocytes and fibroblasts. International Journal of Cancer, 1986, 37, 623-628.	5.1	12
78	Immunological detection of proteins phosphorylated at tyrosine in cells stimulated by growth factors or transformed by retroviral-oncogene-coded tyrosine kinases. FEBS Journal, 1986, 158, 383-391.	0.2	36
79	Organization of cytoskeleton and fibronectin matrix in rous sarcoma virus (RSV)-transformed fibroblast lines with different metastatic potential. European Journal of Cancer & Clinical Oncology, 1985, 21, 85-96.	0.7	9
80	Role of heterochromatin variation in the instability of a marker chromosome during tumor progression. Cancer Genetics and Cytogenetics, 1985, 15, 283-291.	1.0	14
81	Monoclonal Antibodies to the Collagen Binding Domain of Human Plasma Fibronectin. Pathobiology, 1984, 52, 225-236.	3.8	4
82	Immunofluorescence localization of phosphotyrosine containing proteins in RSV-transformed mouse fibroblasts*1. Experimental Cell Research, 1984, 154, 112-124.	2.6	27
83	Metastatic clones selected from an RSV-induced mouse sarcoma share a common marker chromosome. International Journal of Cancer, 1983, 31, 455-461.	5.1	19
84	Characterization of T lymphocytes mediatingin vivo protection against RSV-induced murine sarcomas. International Journal of Cancer, 1983, 31, 757-764.	5.1	11
85	Characterization of stable spontaneous metastatic variant lines of RSV-transformed mouse fibroblasts. International Journal of Cancer, 1982, 30, 751-757.	5.1	24