Michael A Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4832890/publications.pdf

Version: 2024-02-01

82 papers 6,722 citations

38 h-index 74163 75 g-index

97 all docs 97
docs citations

97 times ranked 9317 citing authors

#	Article	IF	CITATIONS
1	Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States. International Journal of Forecasting, 2023, 39, 1366-1383.	6.5	23
2	Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. Lancet Infectious Diseases, The, 2022, 22, e42-e51.	9.1	20
3	Improving Pandemic Response: Employing Mathematical Modeling to Confront Coronavirus Disease 2019. Clinical Infectious Diseases, 2022, 74, 913-917.	5.8	36
4	Reduced spread of influenza and other respiratory viral infections during the COVID-19 pandemic in southern Puerto Rico. PLoS ONE, 2022, 17, e0266095.	2.5	4
5	SARS-CoV-2 Transmission From People Without COVID-19 Symptoms. JAMA Network Open, 2021, 4, e2035057.	5.9	767
6	Viral etiology and seasonal trends of pediatric acute febrile illness in southern Puerto Rico; a seven-year review. PLoS ONE, 2021, 16, e0247481.	2.5	8
7	Estimating incidence of infection from diverse data sources: Zika virus in Puerto Rico, 2016. PLoS Computational Biology, 2021, 17, e1008812.	3.2	3
8	Reducing travel-related SARS-CoV-2 transmission with layered mitigation measures: symptom monitoring, quarantine, and testing. BMC Medicine, 2021, 19, 94.	5.5	39
9	Trade-offs between individual and ensemble forecasts of an emerging infectious disease. Nature Communications, 2021, 12, 5379.	12.8	16
10	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	8.4	42
11	Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action. Epidemics, 2020, 33, 100400.	3.0	10
12	Epidemiologic and spatiotemporal trends of Zika Virus disease during the 2016 epidemic in Puerto Rico. PLoS Neglected Tropical Diseases, 2020, 14, e0008532.	3.0	12
13	Individual model forecasts can be misleading, but together they are useful. European Journal of Epidemiology, 2020, 35, 731-732.	5.7	11
14	Recent influenza activity in tropical Puerto Rico has become synchronized with mainland US. Influenza and Other Respiratory Viruses, 2020, 14, 515-523.	3.4	8
15	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	57
16	Coordinating the realâ€time use of global influenza activity data for better public health planning. Influenza and Other Respiratory Viruses, 2020, 14, 105-110.	3.4	4
17	Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. PLoS Computational Biology, 2020, 16, e1007735.	3.2	79
18	Using "outbreak science―to strengthen the use of models during epidemics. Nature Communications, 2019, 10, 3102.	12.8	92

#	Article	IF	CITATIONS
19	Downgrading disease transmission risk estimates using terminal importations. PLoS Neglected Tropical Diseases, 2019, 13, e0007395.	3.0	6
20	Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Computational Biology, 2019, 15, e1007369.	3.2	14
21	Technology to advance infectious disease forecasting for outbreak management. Nature Communications, 2019, 10, 3932.	12.8	44
22	Heterogeneous local dynamics revealed by classification analysis of spatially disaggregated time series data. Epidemics, 2019, 29, 100357.	3.0	9
23	A systematic review and evaluation of Zika virus forecasting and prediction research during a public health emergency of international concern. PLoS Neglected Tropical Diseases, 2019, 13, e0007451.	3.0	31
24	Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Scientific Reports, 2019, 9, 683.	3.3	90
25	MIReAD, a minimum information standard for reporting arthropod abundance data. Scientific Data, 2019, 6, 40.	5. 3	20
26	Reply to Bracher: Scoring probabilistic forecasts to maximize public health interpretability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20811-20812.	7.1	10
27	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
28	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S PLoS Computational Biology, 2019, 15, e1007486.	3.2	119
29	Comparing vector and human surveillance strategies to detect arbovirus transmission: A simulation study for Zika virus detection in Puerto Rico. PLoS Neglected Tropical Diseases, 2019, 13, e0007988.	3.0	2
30	Applying infectious disease forecasting to public health: a path forward using influenza forecasting examples. BMC Public Health, 2019, 19, 1659.	2.9	84
31	Reassessing Serosurvey-Based Estimates of the Symptomatic Proportion of Zika Virus Infections. American Journal of Epidemiology, 2019, 188, 206-213.	3.4	28
32	A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3146-3154.	7.1	199
33	Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia. Scientific Data, 2018, 5, 180073.	5. 3	29
34	Estimating the numbers of pregnant women infected with Zika virus and infants with congenital microcephaly in Colombia, 2015–2017. Journal of Infection, 2018, 76, 529-535.	3.3	11
35	Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics, 2018, 24, 26-33.	3.0	83
36	Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005-2015. PLoS Neglected Tropical Diseases, 2018, 12, e0006743.	3.0	30

#	Article	lF	Citations
37	Preprints: An underutilized mechanism to accelerate outbreak science. PLoS Medicine, 2018, 15, e1002549.	8.4	100
38	Guillain–Barré syndrome risk among individuals infected with Zika virus: a multi-country assessment. BMC Medicine, 2018, 16, 67.	5.5	57
39	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	9.1	185
40	Infectious disease prediction with kernel conditional density estimation. Statistics in Medicine, 2017, 36, 4908-4929.	1.6	43
41	Quantifying Zika: Advancing the Epidemiology of Zika With Quantitative Models. Journal of Infectious Diseases, 2017, 216, S884-S890.	4.0	18
42	Update: Interim Guidance for Health Care Providers Caring for Pregnant Women with Possible Zika Virus Exposure — United States (Including U.S. Territories), July 2017. Morbidity and Mortality Weekly Report, 2017, 66, 781-793.	15.1	106
43	Mosquitoes on a plane: Disinsection will not stop the spread of vector-borne pathogens, a simulation study. PLoS Neglected Tropical Diseases, 2017, 11, e0005683.	3.0	33
44	Assessment of the Probability of Autochthonous Transmission of Chikungunya Virus in Canada under Recent and Projected Climate Change. Environmental Health Perspectives, 2017, 125, 067001.	6.0	27
45	Guillain-Barré Syndrome and Healthcare Needs during Zika Virus Transmission, Puerto Rico, 2016. Emerging Infectious Diseases, 2017, 23, 134-136.	4.3	21
46	Design Strategies for Efficient Arbovirus Surveillance. Emerging Infectious Diseases, 2017, 23, 642-644.	4.3	14
47	Detecting Local Zika Virus Transmission in the Continental United States: A Comparison of Surveillance Strategies. PLOS Currents, 2017, 9, .	1.4	11
48	Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Neglected Tropical Diseases, 2017, 11, e0005797.	3.0	73
49	Immune status alters the probability of apparent illness due to dengue virus infection: Evidence from a pooled analysis across multiple cohort and cluster studies. PLoS Neglected Tropical Diseases, 2017, 11, e0005926.	3.0	53
50	Elevation as a proxy for mosquito-borne Zika virus transmission in the Americas. PLoS ONE, 2017, 12, e0178211.	2.5	30
51	Projecting Month of Birth for At-Risk Infants after Zika Virus Disease Outbreaks. Emerging Infectious Diseases, 2016, 22, 828-832.	4.3	41
52	Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Eurosurveillance, 2016, 21, .	7.0	141
53	Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Scientific Reports, 2016, 6, 33707.	3.3	82
54	Zika and the Risk of Microcephaly. New England Journal of Medicine, 2016, 375, 1-4.	27.0	394

#	Article	IF	Citations
55	Estimating the Number of Pregnant Women Infected With Zika Virus and Expected Infants With Microcephaly Following the Zika Virus Outbreak in Puerto Rico, 2016. JAMA Pediatrics, 2016, 170, 940.	6.2	43
56	Evidence-based risk assessment and communication: a new global dengue-risk map for travellers and clinicians [#] . Journal of Travel Medicine, 2016, 23, taw062.	3.0	89
57	Zika and the Risk of Microcephaly. Obstetrical and Gynecological Survey, 2016, 71, 635-636.	0.4	4
58	Make Data Sharing Routine to Prepare for Public Health Emergencies. PLoS Medicine, 2016, 13, e1002109.	8.4	55
59	Towards Equity in Health: Researchers Take Stock. PLoS Medicine, 2016, 13, e1002186.	8.4	8
60	Enhancing disease surveillance with novel data streams: challenges and opportunities. EPJ Data Science, $2015, 4, .$	2.8	119
61	Advancing Epidemic Prediction and Forecasting: A New US Government Initiative. Online Journal of Public Health Informatics, 2015, 7, .	0.7	18
62	Chikungunya on the move. Trends in Parasitology, 2015, 31, 43-45.	3.3	56
63	Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 303-312.	1.8	28
64	Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11887-11892.	7.1	369
65	Evaluation of Internet-Based Dengue Query Data: Google Dengue Trends. PLoS Neglected Tropical Diseases, 2014, 8, e2713.	3.0	107
66	The whole iceberg: estimating the incidence of yellow fever virus infection from the number of severe cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 482-487.	1.8	113
67	Public health for the people: participatory infectious disease surveillance in the digital age. Emerging Themes in Epidemiology, 2014, 11, 7.	2.7	151
68	Nowcasting the Spread of Chikungunya Virus in the Americas. PLoS ONE, 2014, 9, e104915.	2.5	126
69	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	2.5	357
70	Search strategy has influenced the discovery rate of human viruses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13961-13964.	7.1	47
71	Assessing the Risk of International Spread of Yellow Fever Virus: A Mathematical Analysis of an Urban Outbreak in Asunción, 2008. American Journal of Tropical Medicine and Hygiene, 2012, 86, 349-358.	1.4	69
72	The Incubation Periods of Dengue Viruses. PLoS ONE, 2012, 7, e50972.	2.5	441

#	Article	IF	Citations
73	Models of the impact of dengue vaccines: A review of current research and potential approaches. Vaccine, 2011, 29, 5860-5868.	3.8	88
74	On the Treatment of Airline Travelers in Mathematical Models. PLoS ONE, 2011, 6, e22151.	2.5	16
75	Travelâ€Associated Dengue Infections in the United States, 1996 to 2005. Journal of Travel Medicine, 2010, 17, 8-14.	3.0	57
76	Response to Both Letters:. Journal of Travel Medicine, 2010, 17, 286.1-286.	3.0	0
77	Incubation Periods of Yellow Fever Virus. American Journal of Tropical Medicine and Hygiene, 2010, 83, 183-188.	1.4	87
78	Multiyear Climate Variability and Dengueâ€"El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis. PLoS Medicine, 2009, 6, e1000168.	8.4	217
79	Declining Mortality in American Crow (Corvus brachyrhynchos) Following Natural West Nile Virus Infection. Avian Diseases, 2009, 53, 458-461.	1.0	23
80	Local and Global Effects of Climate on Dengue Transmission in Puerto Rico. PLoS Neglected Tropical Diseases, 2009, 3, e382.	3.0	228
81	High-resolution spatiotemporal weather models for climate studies. International Journal of Health Geographics, 2008, 7, 52.	2.5	9
82	Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization. Journal of Clinical Microbiology, 2007, 45, 1255-1260.	3.9	23