
Zbigniew Dominski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48325/publications.pdf Version: 2024-02-01

ZRICNIEW DOMINSKI

#	Article	IF	CITATIONS
1	The Polyadenylation Factor CPSF-73 Is Involved in Histone-Pre-mRNA Processing. Cell, 2005, 123, 37-48.	28.9	180
2	Formation of the $3\hat{a}\in^2$ end of histone mRNA: Getting closer to the end. Gene, 2007, 396, 373-390.	2.2	157
3	Stem-Loop Binding Protein Facilitates 3′-End Formation by Stabilizing U7 snRNP Binding to Histone Pre-mRNA. Molecular and Cellular Biology, 1999, 19, 3561-3570.	2.3	125
4	Nucleases of the Metallo-Î ² -lactamase Family and Their Role in DNA and RNA Metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42, 67-93.	5.2	117
5	FLASH, a Proapoptotic Protein Involved in Activation of Caspase-8, Is Essential for 3′ End Processing of Histone Pre-mRNAs. Molecular Cell, 2009, 36, 267-278.	9.7	113
6	A 3′ Exonuclease that Specifically Interacts with the 3′ End of Histone mRNA. Molecular Cell, 2003, 12, 295-305.	9.7	106
7	Structure of Histone mRNA Stem-Loop, Human Stem-Loop Binding Protein, and 3′hExo Ternary Complex. Science, 2013, 339, 318-321.	12.6	101
8	Structure of an active human histone pre-mRNA 3′-end processing machinery. Science, 2020, 367, 700-703.	12.6	76
9	Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. Journal of Cell Biology, 2016, 213, 557-570.	5.2	75
10	A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3'-end processing. Genes and Development, 2002, 16, 58-71.	5.9	73
11	Studies of the 5′ Exonuclease and Endonuclease Activities of CPSF-73 in Histone Pre-mRNA Processing. Molecular and Cellular Biology, 2009, 29, 31-42.	2.3	69
12	A Complex Containing the CPSF73 Endonuclease and Other Polyadenylation Factors Associates with U7 snRNP and Is Recruited to Histone Pre-mRNA for 3′-End Processing. Molecular and Cellular Biology, 2013, 33, 28-37.	2.3	67
13	3′ End Processing of Drosophila melanogaster Histone Pre-mRNAs: Requirement for Phosphorylated Drosophila Stem-Loop Binding Protein and Coevolution of the Histone Pre-mRNA Processing System. Molecular and Cellular Biology, 2002, 22, 6648-6660.	2.3	48
14	Emergence of the β-CASP ribonucleases: Highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 532-551.	1.9	48
15	3′-End processing of histone pre-mRNAs in <i>Drosophila</i> : U7 snRNP is associated with FLASH and polyadenylation factors. Rna, 2013, 19, 1726-1744.	3.5	47
16	A Conserved Interaction That Is Essential for the Biogenesis of Histone Locus Bodies. Journal of Biological Chemistry, 2014, 289, 33767-33782.	3.4	35
17	FLASH Is Required for the Endonucleolytic Cleavage of Histone Pre-mRNAs but Is Dispensable for the 5′ Exonucleolytic Degradation of the Downstream Cleavage Product. Molecular and Cellular Biology, 2011, 31, 1492-1502.	2.3	34
18	Molecular mechanisms for the regulation of histone mRNA stem-loop–binding protein by phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2937-46.	7.1	29

ZBIGNIEW DOMINSKI

#	Article	IF	CITATIONS
19	U7 snRNP is recruited to histone pre-mRNA in a FLASH-dependent manner by two separate regions of the stem–loop binding protein. Rna, 2017, 23, 938-951.	3.5	26
20	Differences and similarities between Drosophila and mammalian 3' end processing of histone pre-mRNAs. Rna, 2005, 11, 1835-1847.	3.5	23
21	The hunt for the 3 [′] endonuclease. Wiley Interdisciplinary Reviews RNA, 2010, 1, 325-340.	6.4	21
22	Protein composition of catalytically active U7-dependent processing complexes assembled on histone pre-mRNA containing biotin and a photo-cleavable linker. Nucleic Acids Research, 2018, 46, 4752-4770.	14.5	21
23	Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5′–3′ exonuclease. Rna, 2020, 26, 1345-1359.	3.5	20
24	Dual role for the RNA-binding domain of Xenopus laevis SLBP1 in histone pre-mRNA processing. Rna, 2000, 6, 1635-1648.	3.5	15
25	Superresolution light microscopy of the <i>Drosophila</i> histone locus body reveals a core–shell organization associated with expression of replication–dependent histone genes. Molecular Biology of the Cell, 2021, 32, 942-955.	2.1	15
26	Composition and processing activity of a semi-recombinant holo U7 snRNP. Nucleic Acids Research, 2020, 48, 1508-1530.	14.5	13
27	The N-terminal domains of FLASH and Lsm11 form a 2:1 heterotrimer for histone pre-mRNA 3'-end processing. PLoS ONE, 2017, 12, e0186034.	2.5	12
28	Mapping the Interaction Network of Key Proteins Involved in Histone mRNA Generation: A Hydrogen/Deuterium Exchange Study. Journal of Molecular Biology, 2016, 428, 1180-1196.	4.2	8
29	U7 deciphered: the mechanism that forms the unusual 3′ end of metazoan replication-dependent histone mRNAs. Biochemical Society Transactions, 2021, 49, 2229-2240.	3.4	8
30	An RNA end tied to the cell cycle: New ties to apoptosis and microRNA formation?. Cell Cycle, 2010, 9, 1308-1312.	2.6	7
31	Reconstitution and biochemical assays of an active human histone pre-mRNA 3′-end processing machinery. Methods in Enzymology, 2021, 655, 291-324.	1.0	7
32	Structural Analysis of the SANT/Myb Domain of FLASH and YARP Proteins and Their Complex with the C-Terminal Fragment of NPAT by NMR Spectroscopy and Computer Simulations. International Journal of Molecular Sciences, 2020, 21, 5268.	4.1	5
33	Single-step Purification of Macromolecular Complexes Using RNA Attached to Biotin and a Photo-cleavable Linker. Journal of Visualized Experiments, 2019, , .	0.3	3