Andrew L Waterhouse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831938/publications.pdf

Version: 2024-02-01

140 papers 11,961 citations

51 h-index 27345 106 g-index

150 all docs

150 docs citations

150 times ranked

10555 citing authors

#	Article	IF	CITATIONS
1	Acid complexation of iron controls the fate of hydrogen peroxide in model wine. Food Chemistry, 2022, 377, 131910.	4.2	1
2	A novel method combining stable isotopic labeling and high-resolution mass spectrometry to trace the quinone reaction products in wines. Food Chemistry, 2022, 383, 132448.	4.2	4
3	Can Chemical Analysis Predict Wine Aging Capacity?. Foods, 2021, 10, 654.	1.9	6
4	Normalâ€phase chromatographic separation of pigmented wine tannin by nanoâ€HPLC quadrupole timeâ€ofâ€flight tandem mass spectrometry and identification of candidate molecular features. Journal of the Science of Food and Agriculture, 2021, 101, 4699-4704.	1.7	0
5	Anthocyanin Addition Alters Tannin Extraction from Grape Skins in Model Solutions via Chemical Reactions. Journal of Agricultural and Food Chemistry, 2021, 69, 7687-7697.	2.4	7
6	Evaluation of the potential of total proanthocyanidin content in feces as an intake biomarker. Food Research International, 2021, 145, 110390.	2.9	4
7	A quarter century of wine pigment discovery. Journal of the Science of Food and Agriculture, 2020, 100, 5093-5101.	1.7	25
8	Red Wine Dryness Perception Related to Physicochemistry. Journal of Agricultural and Food Chemistry, 2020, 68, 2964-2972.	2.4	22
9	Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by <i>Oenococcus oeni</i> and <i>Lactobacillus plantarum</i> in model wine solution. Journal of the Science of Food and Agriculture, 2020, 100, 2110-2120.	1.7	27
10	Yeasts Induce Acetaldehyde Production in Wine Micro-oxygenation Treatments. Journal of Agricultural and Food Chemistry, 2020, 68, 15216-15227.	2.4	12
11	Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiology, 2020, 90, 103460.	2.1	19
12	Determination of Molecular and "Truly―Free Sulfur Dioxide in Wine: A Comparison of Headspace and Conventional Methods. American Journal of Enology and Viticulture, 2020, 71, 222-230.	0.9	10
13	Omics Forecasting: Predictive Calculations Permit the Rapid Interpretation of High-Resolution Mass Spectral Data from Complex Mixtures. Journal of Agricultural and Food Chemistry, 2019, 67, 13318-13326.	2.4	2
14	Combinatorics of proanthocyanidins in wine. Analyst, The, 2019, 144, 4395-4399.	1.7	7
15	Oxygen exposure during red wine fermentation modifies tannin reactivity with poly-l-proline. Food Chemistry, 2019, 297, 124923.	4.2	11
16	Cabernet Sauvignon Aging Stability Altered by Microoxygenation. American Journal of Enology and Viticulture, 2019, 70, 323-331.	0.9	10
17	Acetaldehyde reactions during wine bottle storage. Food Chemistry, 2019, 290, 208-215.	4.2	28
18	Tracing oxidation reaction pathways in wine using 13C isotopolog patterns and a putative compound database. Analytica Chimica Acta, 2019, 1054, 74-83.	2.6	17

#	Article	IF	CITATIONS
19	A Production-Accessible Method: Spectrophotometric Iron Speciation in Wine Using Ferrozine and Ethylenediaminetetraacetic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 680-687.	2.4	9
20	Friction forces of saliva and red wine on hydrophobic and hydrophilic surfaces. Food Research International, 2019, 116, 1041-1046.	2.9	13
21	Oak barrel tannin and toasting temperature: Effects on red wine condensed tannin chemistry. LWT - Food Science and Technology, 2018, 91, 330-338.	2.5	24
22	Understanding microoxygenation: Effect of viable yeasts and sulfur dioxide levels on the sensory properties of a Merlot red wine. Food Research International, 2018, 108, 505-515.	2.9	14
23	Oak barrel tannin and toasting temperature: Effects on red wine anthocyanin chemistry. LWT - Food Science and Technology, 2018, 98, 444-450.	2.5	5
24	Condensed Tannin Reacts with SO ₂ during Wine Aging, Yielding Flavan-3-ol Sulfonates. Journal of Agricultural and Food Chemistry, 2018, 66, 9259-9268.	2.4	34
25	Flavanols react preferentially with quinones through an electron transfer reaction, stimulating rather than preventing wine browning. Analytica Chimica Acta, 2018, 1039, 162-171.	2.6	30
26	Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Frontiers in Plant Science, 2018, 9, 323.	1.7	68
27	Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology, 2018, 18, 16-24.	3.9	93
28	Yeast alter microâ€oxygenation of wine: oxygen consumption and aldehyde production. Journal of the Science of Food and Agriculture, 2017, 97, 3847-3854.	1.7	13
29	Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food and Function, 2017, 8, 2915-2923.	2.1	60
30	Use of metabolomics and lipidomics to evaluate the hypocholestreolemic effect of Proanthocyanidins from grape seed in a pig model. Molecular Nutrition and Food Research, 2016, 60, 2219-2227.	1.5	22
31	¹ H NMR: A Novel Approach To Determining the Thermodynamic Properties of Acetaldehyde Condensation Reactions with Glycerol, (+)-Catechin, and Glutathione in Model Wine. Journal of Agricultural and Food Chemistry, 2016, 64, 6869-6878.	2.4	37
32	Comments on Moderate Alcohol Consumption and Mortality. Journal of Studies on Alcohol and Drugs, 2016, 77, 834-836.	0.6	6
33	The PI3K/Akt pathway is involved in procyanidinâ€mediated suppression of human colorectal cancer cell growth. Molecular Carcinogenesis, 2016, 55, 2196-2209.	1.3	33
34	Having impact. Journal of the Science of Food and Agriculture, 2015, 95, 1-1.	1.7	0
35	A rapid, one step preparation for measuring selected free plus SO 2 -bound wine carbonyls by HPLC-DAD/MS. Talanta, 2015, 134, 596-602.	2.9	41
36	Sulfur Dioxide and Glutathione Alter the Outcome of Microoxygenation. American Journal of Enology and Viticulture, 2015, 66, 411-423.	0.9	48

#	Article	IF	CITATIONS
37	Direct Analysis of Free and Sulfite-Bound Carbonyl Compounds in Wine by Two-Dimensional Quantitative Proton and Carbon Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry, 2015, 87, 10799-10806.	3.2	23
38	Quinone Reactions in Wine Oxidation. ACS Symposium Series, 2015, , 291-301.	0.5	6
39	Rapid analysis of heterocyclic acetals in wine by stable isotope dilution gas chromatography–mass spectrometry. Tetrahedron, 2015, 71, 3032-3038.	1.0	17
40	Influence of closure, phenolic levels and microoxygenation on Cabernet Sauvignon wine composition after 5 years' bottle storage. Journal of the Science of Food and Agriculture, 2015, 95, 36-43.	1.7	29
41	Tracing flavonoid degradation in grapes by MS filtering with stable isotopes. Food Chemistry, 2015, 166, 448-455.	4.2	23
42	Untargeted Profiling of Tracer-Derived Metabolites Using Stable Isotopic Labeling and Fast Polarity-Switching LC–ESI-HRMS. Analytical Chemistry, 2014, 86, 11533-11537.	3.2	52
43	Renewal and Growth at JSFA in 2014. Journal of the Science of Food and Agriculture, 2014, 94, 1-1.	1.7	O
44	Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones. Food Chemistry, 2014, 163, 61-67.	4.2	65
45	The anthocyanin metabolites gallic acid, 3- <i>O</i> -methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Molecular Carcinogenesis, 2014, 53, 432-439.	1.3	93
46	Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food and Function, 2014, 5, 2298-2308.	2.1	109
47	Tracing Phenolic Metabolism in Vitis vinifera Berries with 13C6-Phenylalanine: Implication of an Unidentified Intermediate Reservoir. Journal of Agricultural and Food Chemistry, 2014, 62, 2321-2326.	2.4	10
48	Effect of Metal Chelators on the Oxidative Stability of Model Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 9480-9487.	2.4	26
49	Bioavailability of Intact Proanthocyanidins in the Rat Colon after Ingestion of Grape Seed Extract. Journal of Agricultural and Food Chemistry, 2013, 61, 121-127.	2.4	77
50	A Method To Quantify Quinone Reaction Rates with Wine Relevant Nucleophiles: A Key to the Understanding of Oxidative Loss of Varietal Thiols. Journal of Agricultural and Food Chemistry, 2012, 60, 8484-8491.	2.4	145
51	Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography–diode-array detector–mass spectrometer/mass spectrometer detection. Analytica Chimica Acta, 2012, 747, 51-57.	2.6	23
52	Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT - Food Science and Technology, 2012, 47, 154-160.	2.5	41
53	Wine Oxidation: Recent Revelations, Observations, and Predictions. ACS Symposium Series, 2012, , 159-166.	0.5	2
54	Identification and Cancer Therapeutic Properties of Microfloral Anthocyanin Metabolites. Journal of Wine Research, 2011, 22, 171-174.	0.9	1

#	Article	IF	CITATIONS
55	4-Methylcatechol Inhibits Protein Oxidation in Meat but Not Disulfide Formation. Journal of Agricultural and Food Chemistry, 2011, 59, 10329-10335.	2.4	67
56	Thiol–Quinone Adduct Formation in Myofibrillar Proteins Detected by LC-MS. Journal of Agricultural and Food Chemistry, 2011, 59, 6900-6905.	2.4	95
57	Novel Antioxidant Reactions of Cinnamates in Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 6221-6226.	2.4	29
58	Controlling the Fenton Reaction in Wine. Journal of Agricultural and Food Chemistry, 2010, 58, 1699-1707.	2.4	122
59	Gut Metabolites of Anthocyanins, Gallic Acid, $3 < i > O < i>$ Methylgallic Acid, and 2,4,6-Trihydroxybenzaldehyde, Inhibit Cell Proliferation of Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 5320-5327.	2.4	112
60	Metabolites Are Key to Understanding Health Effects of Wine Polyphenolics. Journal of Nutrition, 2009, 139, 1824S-1831S.	1.3	104
61	"Resveratrol metabolites in urine as biomarker of wine intake in free-living subjects: The PREDIMED Study― Free Radical Biology and Medicine, 2009, 46, 1561.	1.3	9
62	Identification of Free Radical Intermediates in Oxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. Journal of Agricultural and Food Chemistry, 2009, 57, 4359-4365.	2.4	93
63	Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Analytica Chimica Acta, 2008, 626, 104-110.	2.6	61
64	Identification of Cabernet Sauvignon Anthocyanin Gut Microflora Metabolites. Journal of Agricultural and Food Chemistry, 2008, 56, 9299-9304.	2.4	110
65	Cocoa and health: a decade of research. British Journal of Nutrition, 2008, 99, 1-11.	1.2	276
66	Milk Does Not Affect the Bioavailability of Cocoa Powder Flavonoid in Healthy Human. Annals of Nutrition and Metabolism, 2007, 51, 493-498.	1.0	103
67	Oxidation of Glycerol in the Presence of Hydrogen Peroxide and Iron in Model Solutions and Wine. Potential Effects on Wine Color. Journal of Agricultural and Food Chemistry, 2006, 54, 4668-4673.	2.4	58
68	Glyceraldehyde Bridging between Flavanols and Malvidin-3-glucoside in Model Solutions. Journal of Agricultural and Food Chemistry, 2006, 54, 9105-9111.	2.4	21
69	A Simple Method To Separate Red Wine Nonpolymeric and Polymeric Phenols by Solid-Phase Extraction. Journal of Agricultural and Food Chemistry, 2006, 54, 2839-2844.	2.4	41
70	Reduction of catechin, rutin, and quercetin levels by interaction with food-related microorganisms in a resting state. Journal of the Science of Food and Agriculture, 2006, 86, 2105-2112.	1.7	7
71	In focus: Antioxidants: mirage or evolving etymology?. Journal of the Science of Food and Agriculture, 2006, 86, 1987-1988.	1.7	3
72	In Focus: Polyphenolics: diverse sources and effects implicate diet. Journal of the Science of Food and Agriculture, 2006, 86, 2243-2244.	1.7	2

#	Article	IF	Citations
7 3	In focus: Polyphenolics: anti-inflammatory metabolites underlie health benefits. Journal of the Science of Food and Agriculture, 2006, 86, 2485-2486.	1.7	1
74	Consumer Labels can Convey Polyphenolic Content: Implications for Public Health. Clinical and Developmental Immunology, 2005, 12, 43-46.	3.3	2
75	The Fate of Malvidin-3-glucoside in New Wine. ACS Symposium Series, 2004, , 217-231.	0.5	1
76	Short History of Red Wine Color. ACS Symposium Series, 2004, , 1-6.	0.5	1
77	An Assay To Estimate Tannins Added to Postmortem Turkey Meat. Journal of Agricultural and Food Chemistry, 2003, 51, 6640-6644.	2.4	5
78	Enzymatic Synthesis of [3â€~-O-Methyl-3H]malvidin-3-glucoside from Petunidin-3-glucoside. Journal of Agricultural and Food Chemistry, 2002, 50, 2429-2431.	2.4	17
79	Urinary excretion of catechin metabolites by human subjects after red wine consumption. British Journal of Nutrition, 2002, 87, 31-37.	1.2	232
80	Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. Journal of Vascular Surgery, 2002, 35, 1226-1232.	0.6	58
81	The present and future of the international wine industry. Nature, 2002, 418, 696-699.	13.7	228
82	Wine Phenolics. Annals of the New York Academy of Sciences, 2002, 957, 21-36.	1.8	432
83	LC/ESâ^'MS Detection of Hydroxycinnamates in Human Plasma and Urine. Journal of Agricultural and Food Chemistry, 2001, 49, 1747-1750.	2.4	98
84	A Cyclic Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and Wine Phenolics. Journal of Agricultural and Food Chemistry, 2001, 49, 1957-1965.	2.4	333
85	HPLCâ^'DADâ^'ESIMS Analysis of Phenolic Compounds in Nectarines, Peaches, and Plums. Journal of Agricultural and Food Chemistry, 2001, 49, 4748-4760.	2.4	594
86	Walnut Polyphenolics Inhibit In Vitro Human Plasma and LDL Oxidation. Journal of Nutrition, 2001, 131, 2837-2842.	1.3	344
87	The Health Effects of Tea and Tea Components: Opportunities for Standardizing Research Methods. Critical Reviews in Food Science and Nutrition, 2001, 41, 387-412.	5.4	15
88	Analysis of pigmented high-molecular-mass grape phenolics using ion-pair, normal-phase high-performance liquid chromatography. Journal of Chromatography A, 2000, 866, 25-34.	1.8	83
89	Changes in grape seed polyphenols during fruit ripening. Phytochemistry, 2000, 55, 77-85.	1.4	322
90	(+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. American Journal of Clinical Nutrition, 2000, 71, 103-108.	2.2	235

#	Article	IF	Citations
91	Inhibition of Oxidation of Human Low-Density Lipoproteins by Phenolic Substances in Different Essential Oils Varieties. Journal of Agricultural and Food Chemistry, 2000, 48, 3801-3805.	2.4	206
92	Catechin Is Present as Metabolites in Human Plasma after Consumption of Red Wine. Journal of Nutrition, 1999, 129, 1662-1668.	1.3	255
93	[16] Resveratrol and piceid in wine. Methods in Enzymology, 1999, 299, 184-190.	0.4	13
94	[11] Reversed-phase high-performance liquid chromatography methods for analysis of wine polyphenols. Methods in Enzymology, 1999, , 113-121.	0.4	46
95	Analysis of (+)-catechin, (â^')-epicatechin and their 3′- and 4′-O-methylated analogs. Biomedical Applications, 1999, 726, 277-283.	1.7	90
96	Synergetic Activity of Catechin and Other Antioxidants. Journal of Agricultural and Food Chemistry, 1999, 47, 4491-4494.	2.4	94
97	Fruit Hydroxycinnamic Acids Inhibit Human Low-Density Lipoprotein Oxidation in Vitro. Journal of Agricultural and Food Chemistry, 1998, 46, 1783-1787.	2.4	233
98	Differential Effects of Small and Large Molecular Weight Wine Phytochemicals on Endothelial Cell Eicosanoid Release. Journal of Agricultural and Food Chemistry, 1998, 46, 1900-1905.	2.4	15
99	Effects of Small-Scale Fining on the Phenolic Composition and Antioxidant Activity of Merlot Wine. ACS Symposium Series, 1998, , 142-155.	0.5	2
100	Phenolic Composition and Antioxidant Activity of Prunes and Prune Juice (Prunus domestica). Journal of Agricultural and Food Chemistry, 1998, 46, 1247-1252.	2.4	260
101	Vanadium levels in French and Californian wines: Influence on vanadium dietary intake. Food Additives and Contaminants, 1998, 15, 585-591.	2.0	17
102	Artifactual Signal Splitting in the Capillary Electrophoresis Analysis of Organic Acids in Wine. Analytical Letters, 1997, 30, 1753-1759.	1.0	15
103	Wine Phenolics and Targets of Chronic Disease. ACS Symposium Series, 1997, , 196-214.	0.5	16
104	Levels of Phenolics in California Varietal Wines. ACS Symposium Series, 1997, , 12-23.	0.5	21
105	Inhibition of Human Low-Density Lipoprotein Oxidation in Relation to Composition of Phenolic Antioxidants in Grapes (Vitis vinifera). Journal of Agricultural and Food Chemistry, 1997, 45, 1638-1643.	2.4	279
106	Resveratrol and Piceid Levels in Wine Production and in Finished Wines. ACS Symposium Series, 1997 , , $56-68$.	0.5	4
107	GC-MS determination of catechin and epicatechin levels in human plasma. Journal of High Resolution Chromatography, 1997, 20, 621-623.	2.0	21
108	Resveratrol:Â Isomeric Molar Absorptivities and Stability. Journal of Agricultural and Food Chemistry, 1996, 44, 1253-1257.	2.4	366

#	Article	IF	Citations
109	Antioxidants in chocolate. Lancet, The, 1996, 348, 834.	6.3	184
110	Levels ofcis- andtrans-Resveratrol and Their Glucosides in White and RoséVitis viniferaWines from Spain. Journal of Agricultural and Food Chemistry, 1996, 44, 2124-2128.	2.4	140
111	Inhibition ofln Vitro Human LDL Oxidation by Phenolic Antioxidants from Grapes and Wines. Journal of the Science of Food and Agriculture, 1996, 70, 55-61.	1.7	449
112	Inhibition ofln VitroHuman LDL Oxidation by Phenolic Antioxidants from Grapes and Wines., 1996, 70, 55.		9
113	Isolation of bacteria and fungi from TNT-contaminated composts and preparation of 14C-ring labeled TNT. International Biodeterioration and Biodegradation, 1995, 35, 421-430.	1.9	14
114	Principal Phenolic Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low-Density Lipoproteins. Journal of Agricultural and Food Chemistry, 1995, 43, 890-894.	2.4	765
115	Direct HPLC Analysis of cis- and trans-Resveratrol and Piceid Isomers in Spanish Red Vitis vinifera Wines. Journal of Agricultural and Food Chemistry, 1995, 43, 281-283.	2.4	259
116	The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochemistry, 1994, 37, 571-573.	1.4	122
117	Oak Lactone Isomer Ratio Distinguishes between Wine Fermented in American and French Oak Barrels. Journal of Agricultural and Food Chemistry, 1994, 42, 1971-1974.	2.4	105
118	Direct injection gas chromatographic mass spectrometric assay for trans-resveratrol. Analytical Chemistry, 1994, 66, 3959-3963.	3.2	81
119	Do Inulin Oligomers Adopt a Regular Helical Form in Solution?. Journal of Carbohydrate Chemistry, 1994, 13, 859-872.	0.4	18
120	Proton and carbon NMR chemical-shift assignments for $[\hat{l}^2$ -d-Fruf-(2 \hat{a} †' 1)]3-(2 \hat{a} †" 1)- \hat{l} ±-d-Glcp (nystose) and $[\hat{l}^2$ -d-Fruf-(2 \hat{a} †' 1)]4-(2 \hat{a} †" 1)- \hat{l} ±-d-Glcp (1,1,1-kestopentaose) from two-dimensional NMR spectral measurements. Carbohydrate Research, 1993, 245, 11-19.	. 1.1	21
121	Occurrence of resveratrol in selected California wines by a new HPLC method. Journal of Agricultural and Food Chemistry, 1993, 41, 521-523.	2.4	107
122	Inhibition of human LDL oxidation by resveratrol. Lancet, The, 1993, 341, 1103-1104.	6.3	732
123	Conformational analysis of levanbiose by molecular mechanics. Carbohydrate Research, 1992, 232, 1-15.	1.1	20
124	Conformational analysis of \hat{l}^2 -d-fructofuranosyl-(2 $\hat{a}\dagger$ 6)- \hat{l}^2 -d-glucopyranoside by molecular mechanics (MM2) calculations. Carbohydrate Research, 1992, 235, 1-13.	1.1	7
125	Conformational analysis of 1-kestose by molecular mechanics and by n.m.r. spectroscopy. Carbohydrate Research, 1991, 217, 29-42.	1.1	27
126	Proton and carbon chemical-shift assignments for 6-kestose and neokestose from two-dimensional n.m.r. measurements. Carbohydrate Research, 1991, 217, 43-49.	1.1	37

#	Article	IF	CITATIONS
127	Conformational analysis of inulobiose by molecular mechanics. Carbohydrate Research, 1990, 207, 221-235.	1.1	25
128	Proton and carbon chemical-shift assignments for 1-kestose, from two-dimensional n.m.rspectral measurements. Carbohydrate Research, 1990, 199, 11-17.	1.1	34
129	Conformational analysis via vicinal carbon-hydrogen coupling. Magnetic Resonance in Chemistry, 1989, 27, 37-43.	1.1	17
130	Cantharidin poisoning associated with specific binding site in liver. Biochemical and Biophysical Research Communications, 1987, 149, 79-85.	1.0	40
131	Structural aspects of ryanodine action and selectivity. Journal of Medicinal Chemistry, 1987, 30, 710-716.	2.9	90
132	Synthesis and tritium labeling of the food mutagens IQ and methyl-IQ. Journal of Labelled Compounds and Radiopharmaceuticals, 1985, 22, 201-216.	0.5	16
133	Ryanoid insecticides: structural examination by fully coupled two-dimensional1H–13C shift correlation nuclear magnetic resonance spectroscopy. Journal of the Chemical Society Perkin Transactions II, 1985, , 1011-1016.	0.9	17
134	The calcium-Ryanodine receptor complex of skeletal and cardiac muscle. Biochemical and Biophysical Research Communications, 1985, 128, 449-456.	1.0	300
135	9, 21-Didehydroryanodine: a new principal toxic constituent of the botanical insecticide Ryania. Journal of the Chemical Society Chemical Communications, 1984, , 1265.	2.0	41
136	Transition metal catalysis in allene formation from Grignard reagents and propargyl chlorides. Journal of Organic Chemistry, 1978, 43, 1385-1388.	1.7	54
137	Clarification of the mechanism of the reaction of terminal propargylic chlorides with alkyl Grignard reagents. Journal of Organic Chemistry, 1978, 43, 1382-1384.	1.7	15
138	Allene formation in reactions of propargyl chlorides with dialkylcuprates and alkylallenylcuprates. Journal of Organic Chemistry, 1978, 43, 1389-1394.	1.7	30
139	Reaction of propargyl halides with Grignard reagents. Iron trichloride catalysis in allene formation. Journal of Organic Chemistry, 1976, 41, 3496-3496.	1.7	45
140	Redox Cycling of Iron: Effects of Chemical Composition on Reaction Rates with Phenols and Oxygen in Model Wine. American Journal of Enology and Viticulture, 0, , ajev.2021.20024-OA.	0.9	8