Laurent Bultot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831567/publications.pdf

Version: 2024-02-01

26 papers 1,509 citations

16 h-index 24 g-index

27 all docs

27 docs citations

times ranked

27

2862 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants, 2022, 11, 723.	5.1	7
2	The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Communications Biology, 2022, 5, 349.	4.4	17
3	α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1032-H1043.	3.2	3
4	Protein <i>O</i> â€GlcNAcylation levels are regulated independently of dietary intake in a tissue and timeâ€specific manner during rat postnatal development. Acta Physiologica, 2021, 231, e13566.	3.8	11
5	New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H838-H853.	3.2	18
6	A new degree of complexi(n)ty in the regulation of GLUT4 trafficking. Biochemical Journal, 2021, 478, 1315-1319.	3.7	0
7	An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International Journal of Molecular Sciences, 2021, 22, 9236.	4.1	9
8	AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB Journal, 2019, 33, 12374-12391.	0.5	57
9	AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Communications, 2018, 9, 374.	12.8	179
10	AMP-Activated Protein Kinase and O-GlcNAcylation, Two Partners Tightly Connected to Regulate Key Cellular Processes. Frontiers in Endocrinology, 2018, 9, 519.	3 . 5	19
11	The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends in Endocrinology and Metabolism, 2018, 29, 827-840.	7.1	67
12	The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation. Frontiers in Cardiovascular Medicine, 2018, 5, 70.	2.4	17
13	Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cellular Signalling, 2017, 34, 23-37.	3.6	50
14	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
15	Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H432-H445.	3.2	29
16	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
17	Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. Journal of Natural Products, 2016, 79, 2856-2864.	3.0	7
18	Mediumâ€chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyteâ€neuron lactate and ketone body shuttle systems. FASEB Journal, 2016, 30, 1913-1926.	0.5	119

LAURENT BULTOT

#	Article	lF	CITATION
19	Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E688-E696.	3.5	75
20	Mechanism of Action of Compound-13: An $\hat{l}\pm 1$ -Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.	6.0	103
21	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
22	PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochemical Journal, 2013, 452, 531-543.	3.7	64
23	AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochemical Journal, 2012, 443, 193-203.	3.7	98
24	AMP-Activated Protein Kinase in Liver. , 2010, , 275-285.		0
25	Characterization and Quality Control of Antibodies Used in ChIP Assays. Methods in Molecular Biology, 2009, 567, 27-43.	0.9	10
26	Myosin light chains are not a physiological substrate of AMPK in the control of cell structure changes. FEBS Letters, 2009, 583, 25-28.	2.8	27