Jacek Grams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831420/publications.pdf Version: 2024-02-01

IACER CRAMS

#	Article	IF	CITATIONS
1	Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chemical Communications, 2014, 50, 12450-12453.	4.1	168
2	Titaniaâ€Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γâ€Valerolactone Yield. ChemSusChem, 2015, 8, 1538-1547.	6.8	85
3	Pt/Ga2O3 catalysts of selective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 250, 195-208.	6.2	56
4	Optimization of Ni/ZrO2 catalytic performance in thermochemical cellulose conversion for enhanced hydrogen production. Applied Catalysis B: Environmental, 2014, 145, 85-90.	20.2	56
5	The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials. Journal of Catalysis, 2007, 245, 259-266.	6.2	37
6	Influence of Ni catalyst support on the product distribution of cellulose fast pyrolysis vapors upgrading. Journal of Analytical and Applied Pyrolysis, 2015, 113, 557-563.	5.5	34
7	Preliminary studies using imaging mass spectrometry TOF-SIMS in detection and analysis of fingerprints. Imaging Science Journal, 2007, 55, 180-187.	0.5	33
8	Activity of Ni catalysts for hydrogen production via biomass pyrolysis. Kinetics and Catalysis, 2012, 53, 565-569.	1.0	33
9	Synthesis and characterization of novel polythiourethane hardeners for epoxy resins. Comptes Rendus Chimie, 2012, 15, 1065-1071.	0.5	26
10	Surface layer modification of ion bombarded HDPE. Surface Science, 2004, 564, 179-186.	1.9	25
11	Effect of alkali and alkaline earth metals addition on Ni/ZrO2 catalyst activity in cellulose conversion. Journal of Thermal Analysis and Calorimetry, 2016, 126, 103-110.	3.6	22
12	Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. Journal of Analytical and Applied Pyrolysis, 2019, 138, 231-241.	5.5	22
13	Catalyst Stability—Bottleneck of Efficient Catalytic Pyrolysis. Catalysts, 2021, 11, 265.	3.5	22
14	Chlorine Influence on Palladium Doped Nickel Catalysts in Levulinic Acid Hydrogenation with Formic Acid as Hydrogen Source. ACS Sustainable Chemistry and Engineering, 2018, 6, 14607-14613.	6.7	19
15	Investigation of the coke deposit on Ni–Al2O3 and Co–Al2O3 catalysts. Carbon, 2002, 40, 2025-2028.	10.3	18
16	Modification of Ni/ZrO2 catalyst by selected rare earth metals as a promising way for increase in the efficiency of thermocatalytic conversion of lignocellulosic biomass to hydrogen-rich gas. Fuel, 2020, 276, 118110.	6.4	17
17	High resolution surface imaging of Co/ZrO2 catalyst by TOF-SIMS. Surface Science, 2004, 549, L21-L26.	1.9	16
18	Time-of-flight secondary ion-mass spectrometry as a new technique for the investigations of the deactivation process of hydrodechlorination catalysts. Russian Journal of Physical Chemistry A, 2007, 81, 1515-1520.	0.6	15

JACEK GRAMS

#	Article	IF	CITATIONS
19	Hydroconversion of 1-methylnaphthalene over Pt/AlSBA-15–Al2O3 composite catalysts. Applied Catalysis A: General, 2015, 505, 116-130.	4.3	15
20	Surface properties of platinum catalysts based on various nanoporous matrices. Microporous and Mesoporous Materials, 2007, 99, 345-354.	4.4	14
21	ToF-SIMS as a versatile tool to study the surface properties of silica supported cobalt catalyst for Fischer–Tropsch synthesis. Fuel, 2014, 122, 301-309.	6.4	14
22	Hydrogen production from biomass woodchips using Ni/CaO–ZrO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 97-107.	1.7	14
23	Understanding Electrodeposition of Chitosan–Hydroxyapatite Structures for Regeneration of Tubular-Shaped Tissues and Organs. Materials, 2021, 14, 1288.	2.9	14
24	Impact of the modification method of Ni/ZrO2 catalyst by alkali and alkaline earth metals on its activity in thermo-chemical conversion of cellulose. International Journal of Hydrogen Energy, 2018, 43, 22303-22314.	7.1	13
25	ToF-SIMS studies of the regeneration of Pd/TiO2 catalyst used in hydrodechlorination process. International Journal of Mass Spectrometry, 2010, 292, 1-6.	1.5	12
26	Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials, 2018, 11, 2329.	2.9	12
27	Synthesis of TiO2–ZrO2 Mixed Oxides via the Alginate Route: Application in the Ru Catalytic Hydrogenation of Levulinic Acid to Gamma-Valerolactone. Energies, 2019, 12, 4706.	3.1	12
28	WGS and reforming properties of NbMCM-41 materials. Catalysis Today, 2006, 114, 281-286.	4.4	11
29	Surface Studies of Heterogeneous Catalysts by Time-of-Flight Secondary Ion Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 453-461.	1.0	10
30	ToF‣IMS study of the surface of catalysts used in biomass valorization. Surface and Interface Analysis, 2014, 46, 726-730.	1.8	10
31	Impact of Zr Incorporation into the Ni/AlSBA-15 Catalyst on Its Activity in Cellulose Conversion to Hydrogen-Rich Gas. Energy & Fuels, 2017, 31, 14089-14096.	5.1	10
32	Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials, 2019, 12, 3792.	2.9	9
33	Thiirane resins cured with polythiourethane hardeners as novel supports for metal complex catalysts. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
34	Hydrogen-Rich Gas Production by Upgrading of Biomass Pyrolysis Vapors over NiBEA Catalyst: Impact of Dealumination and Preparation Method. Energy & Fuels, 2020, 34, 16936-16947.	5.1	7
35	The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Molecules, 2020, 25, 5362.	3.8	6
36	Application of ToF-SIMS to the study of surfactant removal from AuNbMCM-41 and AuMCM-41 materials. International Journal of Mass Spectrometry, 2010, 289, 138-143.	1.5	5

JACEK GRAMS

#	Article	IF	CITATIONS
37	Time-of-flight secondary ion mass spectrometry as a novel method for surface characterization of carbonaceous material formed during thermochemical conversion of cellulose. International Journal of Mass Spectrometry, 2013, 336, 43-46.	1.5	5
38	Surface characterization of lignocellulosic biomass submitted to pyrolysis. Surface and Interface Analysis, 2014, 46, 837-841.	1.8	5
39	The Studies of Archaeological Pottery with the Use of Selected Analytical Techniques. Critical Reviews in Analytical Chemistry, 2017, 47, 490-498.	3.5	5
40	Hydro-Pyrolysis and Catalytic Upgrading of Biomass and Its Hydroxy Residue Fast Pyrolysis Vapors. Energies, 2019, 12, 3474.	3.1	5
41	The Impact of Reduction Temperature and Nanoparticles Size on the Catalytic Activity of Cobalt-Containing BEA Zeolite in Fischer–Tropsch Synthesis. Catalysts, 2020, 10, 553.	3.5	5
42	Investigation of biomass depolymerization by surface techniques. Surface and Interface Analysis, 2014, 46, 832-836.	1.8	4
43	Tribological modification of metal counterface by rubber. Tribology Letters, 2006, 24, 115-118.	2.6	3
44	Comparison of the quantity and reactivity of carbon deposit arising on Mo/Al2O3and Mo/ZrO2catalysts. Reaction Kinetics and Catalysis Letters, 2003, 80, 319-327.	0.6	0
45	Influence of ZrO2 on the physicochemical properties of the ZrO2-TiO2 binary system. Russian Journal of Physical Chemistry A, 2007, 81, 1992-1996.	0.6	0
46	Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. ChemSusChem, 2015, 8, 1497-1497.	6.8	0