Ana S Luis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4830963/publications.pdf

Version: 2024-02-01

759233 940533 1,245 17 12 16 citations h-index g-index papers 21 21 21 1673 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
2	Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3, 210-219.	13.3	263
3	Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nature Microbiology, 2019, 4, 1571-1581.	13.3	116
4	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	27.8	87
5	Bacteroides thetaiotaomicron. Trends in Microbiology, 2018, 26, 966-967.	7.7	72
6	Complexity of the <i>Ruminococcus flavefaciens</i> cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7136-7141.	7.1	58
7	Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and β-1,3–1,4-Glucans through Distinct Mechanisms. Journal of Biological Chemistry, 2015, 290, 10572-10586.	3.4	36
8	Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Current Opinion in Chemical Biology, 2018, 47, 126-133.	6.1	35
9	Understanding How Noncatalytic Carbohydrate Binding Modules Can Display Specificity for Xyloglucan. Journal of Biological Chemistry, 2013, 288, 4799-4809.	3.4	31
10	A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host and Microbe, 2020, 27, 79-92.e9.	11.0	30
11	Influence of a Mannan Binding Family 32 Carbohydrate Binding Module on the Activity of the Appended Mannanase. Applied and Environmental Microbiology, 2012, 78, 4781-4787.	3.1	27
12	Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nature Chemical Biology, 2022, 18, 841-849.	8.0	16
13	Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2054-2062.	2.3	9
14	The family 6 carbohydrate-binding module (CtCBM6B) ofClostridium thermocellumalpha-L-arabinofuranosidase binds xylans and thermally stabilized by Ca2+ions. Biocatalysis and Biotransformation, 2013, 31, 217-225.	2.0	3
15	Overproduction, purification, crystallization and preliminary X-ray characterization of a novel carbohydrate-binding module of endoglucanase Cel5A fromEubacterium cellulosolvens. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 491-493.	0.7	2
16	Overproduction, purification, crystallization and preliminary X-ray characterization of the C-terminal family 65 carbohydrate-binding module (CBM65B) of endoglucanase Cel5A fromEubacterium cellulosolvens. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 191-194.	0.7	0
17	A Genetically Adaptable Strategy for Ribose Scavenging in a Human Gut Symbiont Plays a Diet-Dependent Role in Colon Colonization. SSRN Electronic Journal, 0, , .	0.4	O