Heinrich Leonhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4830924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Tumors in Mice by Genomic Hypomethylation. Science, 2003, 300, 489-492.	6.0	1,393
2	A guide to super-resolution fluorescence microscopy. Journal of Cell Biology, 2010, 190, 165-175.	2.3	1,131
3	Comparative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell, 2017, 65, 631-643.e4.	4.5	1,131
4	Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science, 2008, 320, 1332-1336.	6.0	1,016
5	A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell, 1992, 71, 865-873.	13.5	946
6	Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell, 2013, 152, 1146-1159.	13.5	888
7	LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation. Cell, 2013, 152, 584-598.	13.5	681
8	A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins. Molecular and Cellular Proteomics, 2008, 7, 282-289.	2.5	616
9	Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 2006, 3, 887-889.	9.0	613
10	Dynamics of DNA Replication Factories in Living Cells. Journal of Cell Biology, 2000, 149, 271-280.	2.3	521
11	Modulation of protein properties in living cells using nanobodies. Nature Structural and Molecular Biology, 2010, 17, 133-138.	3.6	494
12	Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570, 395-399.	13.7	464
13	Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments. Science, 2011, 331, 1616-1620.	6.0	444
14	ldentifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. Journal of Cell Biology, 2008, 183, 223-239.	2.3	404
15	Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 2010, 38, e181-e181.	6.5	385
16	Reversal of terminal differentiation and control of DNA replication: Cyclin A and cdk2 specifically localize at subnuclear sites of DNA replication. Cell, 1993, 74, 979-992.	13.5	379
17	cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature, 2017, 549, 394-398.	13.7	346
18	Recruitment of DNA methyltransferase I to DNA repair sites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8905-8909.	3.3	299

#	Article	IF	CITATIONS
19	Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Research, 2007, 35, 7665-7675.	6.5	271
20	Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 2014, 10, 574-581.	3.9	270
21	Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry, 2017, 9, 762-771.	6.6	216
22	BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nature Methods, 2019, 16, 870-874.	9.0	214
23	Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation. Journal of Cell Biology, 2005, 169, 733-743.	2.3	206
24	DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Research, 2015, 25, 911-929.	5.7	201
25	Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Research, 2007, 35, 4301-4312.	6.5	200
26	DNA Polymerase Clamp Shows Little Turnover at Established Replication Sites but Sequential De Novo Assembly at Adjacent Origin Clusters. Molecular Cell, 2002, 10, 1355-1365.	4.5	197
27	Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 2015, 209, 633-644.	2.3	195
28	CDK9-dependent RNA polymerase II pausing controls transcription initiation. ELife, 2017, 6, .	2.8	179
29	Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Research, 2012, 40, 5368-5377.	6.5	178
30	p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PL ^{pro} via E3 ubiquitin ligase RCHY1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5192-201.	3.3	172
31	DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. Journal of Cell Biology, 2007, 176, 565-571.	2.3	171
32	Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angewandte Chemie - International Edition, 2018, 57, 2314-2333.	7.2	170
33	Np95 interacts with <i>de novo</i> DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Reports, 2009, 10, 1259-1264.	2.0	167
34	DNA Methyltransferase Is Actively Retained in the Cytoplasm during Early Development. Journal of Cell Biology, 1999, 147, 25-32.	2.3	164
35	Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain. PLoS ONE, 2011, 6, e21306.	1.1	159
36	Replicationâ€independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Reports, 2004, 5, 1181-1186.	2.0	156

#	Article	IF	CITATIONS
37	Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Molecular Cell, 2017, 67, 550-565.e5.	4.5	151
38	Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics and Chromatin, 2014, 7, 8.	1.8	148
39	Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus, 2014, 5, 163-172.	0.6	146
40	Identification of the elementary structural units of the DNA damage response. Nature Communications, 2017, 8, 15760.	5.8	141
41	Visualization and targeted disruption of protein interactions in living cells. Nature Communications, 2013, 4, 2660.	5.8	140
42	The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Research, 2010, 38, 1796-1804.	6.5	139
43	MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Research, 2007, 35, 5402-5408.	6.5	137
44	Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. Journal of Cellular Biochemistry, 2011, 112, 439-444.	1.2	134
45	Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1β production. Nature Immunology, 2014, 15, 538-545.	7.0	132
46	Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nature Methods, 2005, 2, 751-756.	9.0	124
47	A protein assembly mediates Xist localization and gene silencing. Nature, 2020, 587, 145-151.	13.7	123
48	Current Status: Site-Specific Antibody Drug Conjugates. Journal of Clinical Immunology, 2016, 36, 100-107.	2.0	120
49	DNA methylationâ€mediated epigenetic control. Journal of Cellular Biochemistry, 2009, 108, 43-51.	1.2	111
50	CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus, 2012, 3, 101-110.	0.6	111
51	Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity, 2017, 47, 1067-1082.e12.	6.6	109
52	PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Research, 2011, 39, 5045-5056.	6.5	108
53	Interactions within the mammalian DNA methyltransferase family. BMC Molecular Biology, 2003, 4, 7.	3.0	106
54	Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Journal of Cell Biology, 2010, 190, 777-791.	2.3	106

#	Article	IF	CITATIONS
55	Phosphorylation of TET Proteins Is Regulated via O-GlcNAcylation by the O-Linked N-Acetylglucosamine Transferase (OGT). Journal of Biological Chemistry, 2015, 290, 4801-4812.	1.6	102
56	PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Research, 2005, 33, 3521-3528.	6.5	95
57	Mapping and Use of a Sequence that Targets DNA Ligase I to Sites of DNA Replication In Vivo. Journal of Cell Biology, 1997, 139, 579-587.	2.3	90
58	Stable chromosomal units determine the spatial and temporal organization of DNA replication. Journal of Cell Science, 2004, 117, 5353-5365.	1.2	89
59	Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Research, 2006, 34, 3523-3532.	6.5	88
60	Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1. PLoS ONE, 2011, 6, e16627.	1.1	87
61	DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 2000, 79, 78-83.	1.2	86
62	Regulation of DNA methyltransferase 1 by interactions and modifications. Nucleus, 2011, 2, 392-402.	0.6	86
63	FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 2021, 220, .	2.3	86
64	Probing Intranuclear Environments at the Single-Molecule Level. Biophysical Journal, 2008, 94, 2847-2858.	0.2	85
65	Versatile and Efficient Site‧pecific Protein Functionalization by Tubulin Tyrosine Ligase. Angewandte Chemie - International Edition, 2015, 54, 13787-13791.	7.2	82
66	Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nature Communications, 2020, 11, 1222.	5.8	82
67	A Fluorescent Two-hybrid Assay for Direct Visualization of Protein Interactions in Living Cells. Molecular and Cellular Proteomics, 2008, 7, 2279-2287.	2.5	81
68	TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Research, 2014, 42, 8592-8604.	6.5	79
69	Universal Superâ€Resolution Multiplexing by DNA Exchange. Angewandte Chemie - International Edition, 2017, 56, 4052-4055.	7.2	79
70	Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Molecular Metabolism, 2018, 11, 113-128.	3.0	79
71	Structure and function of the mouse DNA methyltransferase gene: Dnmt1 shows a tripartite structure. Journal of Molecular Biology, 2000, 297, 293-300.	2.0	78
72	Cysteine‣elective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angewandte Chemie - International Edition, 2019, 58, 11625-11630.	7.2	76

#	Article	IF	CITATIONS
73	Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20291-20296.	3.3	74
74	MeCP2 Rett mutations affect large scale chromatin organization. Human Molecular Genetics, 2011, 20, 4187-4195.	1.4	72
75	Quantitative 3D structured illumination microscopy of nuclear structures. Nature Protocols, 2017, 12, 1011-1028.	5.5	72
76	XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions. BMC Molecular Biology, 2007, 8, 81.	3.0	66
77	Differentiation and large scale spatial organization of the genome. Current Opinion in Genetics and Development, 2010, 20, 562-569.	1.5	66
78	Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Research, 2014, 42, e38-e38.	6.5	66
79	Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16866-16871.	3.3	64
80	Magnetosome Expression of Functional Camelid Antibody Fragments (Nanobodies) in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 2011, 77, 6165-6171.	1.4	63
81	The PHD Domain of Np95 (mUHRF1) Is Involved in Large-Scale Reorganization of Pericentromeric Heterochromatin. Molecular Biology of the Cell, 2008, 19, 3554-3563.	0.9	62
82	Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. Journal of Cellular Biochemistry, 2011, 112, 2585-2593.	1.2	62
83	Cell Cycle Markers for Live Cell Analyses. Cell Cycle, 2005, 4, 453-455.	1.3	58
84	Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Research, 2012, 40, 159-169.	6.5	58
85	Dissection of cell cycle–dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Research, 2013, 41, 4860-4876.	6.5	56
86	Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia, 2020, 34, 50-62.	3.3	56
87	DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics and Chromatin, 2014, 7, 17.	1.8	55
88	Determination of local chromatin composition by CasID. Nucleus, 2016, 7, 476-484.	0.6	55
89	Spatial organization of transcribed eukaryotic genes. Nature Cell Biology, 2022, 24, 327-339.	4.6	55
90	Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Research, 2013, 21, 535-554.	1.0	53

#	Article	IF	CITATIONS
91	Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5–hydroxymethylcytosine. Nucleic Acids Research, 2011, 39, 5149-5156.	6.5	51
92	A Mammalian Myocardial Cell-Free System to Study Cell Cycle Reentry in Terminally Differentiated Cardiomyocytes. Circulation Research, 1999, 85, 294-301.	2.0	50
93	Cathepsin S Alterations Induce a Tumor-Promoting Immune Microenvironment in Follicular Lymphoma. Cell Reports, 2020, 31, 107522.	2.9	50
94	Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Scientific Reports, 2017, 7, 6329.	1.6	48
95	Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. EMBO Journal, 2017, 36, 2263-2279.	3.5	48
96	Histone acetylation controls the inactive X chromosome replication dynamics. Nature Communications, 2011, 2, 222.	5.8	45
97	Secretory cargo sorting by Ca2+-dependent Cab45 oligomerization at the trans-Golgi network. Journal of Cell Biology, 2016, 213, 305-314.	2.3	45
98	A unified multi-kingdom Golden Gate cloning platform. Scientific Reports, 2019, 9, 10131.	1.6	45
99	Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Scientific Reports, 2020, 10, 7462.	1.6	45
100	Engineering antibodies and proteins for molecular in vivo imaging. Current Opinion in Biotechnology, 2011, 22, 882-887.	3.3	44
101	Mammalian DNA methyltransferases show different subnuclear distributions. Journal of Cellular Biochemistry, 2001, 83, 373-379.	1.2	43
102	Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells. Journal of Molecular Biology, 2017, 429, 3814-3824.	2.0	43
103	Direct and Dynamic Detection of HIV-1 in Living Cells. PLoS ONE, 2012, 7, e50026.	1.1	42
104	Dimerization of DNA methyltransferase 1 is mediated by its regulatory domain. Journal of Cellular Biochemistry, 2009, 106, 521-528.	1.2	40
105	DNMT1 mutations found in HSANIE patients affect interaction with UHRF1 and neuronal differentiation. Human Molecular Genetics, 2017, 26, 1522-1534.	1.4	40
106	Ethynylphosphonamidates for the Rapid and Cysteine‣elective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie - International Edition, 2019, 58, 11631-11636.	7.2	40
107	Poly(ADP-ribose) Polymerase 1 (PARP1) Associates with E3 Ubiquitin-Protein Ligase UHRF1 and Modulates UHRF1 Biological Functions. Journal of Biological Chemistry, 2014, 289, 16223-16238.	1.6	39
108	A modular open platform for systematic functional studies under physiological conditions. Nucleic Acids Research, 2015, 43, e112-e112.	6.5	39

#	Article	IF	CITATIONS
109	Small chromosomal regions position themselves autonomously according to their chromatin class. Genome Research, 2017, 27, 922-933.	2.4	39
110	Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Research, 2017, 45, 2438-2457.	6.5	38
111	Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nature Communications, 2020, 11, 5972.	5.8	38
112	Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time. Scientific Reports, 2016, 6, 25019.	1.6	37
113	Intrinsic and Extrinsic Connections of Tet3 Dioxygenase with CXXC Zinc Finger Modules. PLoS ONE, 2013, 8, e62755.	1.1	36
114	KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1. Nucleic Acids Research, 2017, 45, gkw979.	6.5	35
115	Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nature Communications, 2020, 11, 6146.	5.8	35
116	Global DNA Hypomethylation Prevents Consolidation of Differentiation Programs and Allows Reversion to the Embryonic Stem Cell State. PLoS ONE, 2012, 7, e52629.	1.1	34
117	Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics and Chromatin, 2017, 10, 39.	1.8	34
118	Step-Wise Assembly, Maturation and Dynamic Behavior of the Human CENP-P/O/R/Q/U Kinetochore Sub-Complex. PLoS ONE, 2012, 7, e44717.	1.1	32
119	Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. Chemical Science, 2017, 8, 3471-3478.	3.7	31
120	Direct modulation of the bone marrow mesenchymal stromal cell compartment by azacitidine enhances healthy hematopoiesis. Blood Advances, 2018, 2, 3447-3461.	2.5	31
121	Intranuclear targeting of DNA replication factors. , 1998, 72, 243-249.		29
122	Tunable light and drug induced depletion of target proteins. Nature Communications, 2020, 11, 304.	5.8	29
123	Targeting and Association of Proteins with Functional Domains in the Nucleus: The Insoluble Solution. International Review of Cytology, 1996, 162B, 303-335.	6.2	28
124	Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Experimental Cell Research, 2015, 332, 146-155.	1.2	28
125	Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. Journal of Biological Chemistry, 2016, 291, 4873-4881.	1.6	28
126	Direct protein transfer to terminally differentiated muscle cells. Journal of Molecular Medicine, 1999, 77, 609-613.	1.7	27

#	Article	IF	CITATIONS
127	Novel antibody derivatives for proteome and high-content analysis. Analytical and Bioanalytical Chemistry, 2010, 397, 3203-3208.	1.9	27
128	Case Study on Live Cell Apoptosis-Assay Using Lamin-Chromobody Cell-Lines for High-Content Analysis. Methods in Molecular Biology, 2012, 911, 569-575.	0.4	27
129	Diurnality and Nocturnality in Primates: An Analysis from the Rod Photoreceptor Nuclei Perspective. Evolutionary Biology, 2014, 41, 1-11.	0.5	27
130	Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nature Communications, 2018, 9, 299.	5.8	27
131	Generation and Characterization of a Rat Monoclonal Antibody Specific for Multiple Red Fluorescent Proteins. Hybridoma, 2008, 27, 337-343.	0.5	26
132	The Fluorescent Two-Hybrid (F2H) Assay for Direct Analysis of Protein–Protein Interactions in Living Cells. Methods in Molecular Biology, 2012, 812, 275-282.	0.4	26
133	Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells. Pharmaceutical Research, 2017, 34, 161-174.	1.7	26
134	The SARSâ€unique domain (SUD) of SARS oV and SARS oVâ€2 interacts with human Paip1 to enhance viral RNA translation. EMBO Journal, 2021, 40, e102277.	3.5	26
135	Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus, 2019, 10, 231-253.	0.6	25
136	Functional Links between Nuclear Structure, Gene Expression, DNA Replication, and Methylation. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 345-351.	0.4	25
137	Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. Journal of Cellular Biochemistry, 2008, 104, 1562-1569.	1.2	23
138	Nanobodys: Strategien zur chemischen Funktionalisierung und intrazellulÃ r e Anwendungen. Angewandte Chemie, 2018, 130, 2336-2357.	1.6	23
139	Cristae-dependent quality control of the mitochondrial genome. Science Advances, 2021, 7, eabi8886.	4.7	23
140	A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding. Nucleic Acids Research, 2009, 37, e22-e22.	6.5	22
141	Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections. Chromosome Research, 2012, 20, 849-858.	1.0	22
142	Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Scientific Reports, 2021, 11, 5838.	1.6	22
143	Protein targeting to subnuclear higher order structures: A new level of regulation and coordination of nuclear processes. Journal of Cellular Biochemistry, 1998, 70, 222-230.	1.2	21
144	Structure, function and dynamics of nuclear subcompartments. Current Opinion in Cell Biology, 2012, 24, 79-85.	2.6	21

#	Article	IF	CITATIONS
145	Generation and Characterization of Rat and Mouse Monoclonal Antibodies Specific for MeCP2 and Their Use in X-Inactivation Studies. PLoS ONE, 2011, 6, e26499.	1.1	20
146	A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biology, 2014, 4, 130229.	1.5	20
147	Twists and turns of DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8919-8920.	3.3	19
148	Generation of an alpacaâ€derived nanobody recognizing γâ€H2AX. FEBS Open Bio, 2015, 5, 779-788.	1.0	19
149	L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus, 2017, 8, 548-562.	0.6	19
150	Mitochondrial Alkbh1 localises to mtRNA granules and its knockdown induces mitochondrial UPR in humans and <i>C. elegans</i> . Journal of Cell Science, 2019, 132, .	1.2	19
151	Cysteinselektive phosphonamidatbasierte Elektrophile für modulare Biokonjugationen. Angewandte Chemie, 2019, 131, 11751-11756.	1.6	19
152	EGFR/ERBB receptors differentially modulate sebaceous lipogenesis. FEBS Letters, 2015, 589, 1376-1382.	1.3	18
153	Regulatory encoding of quantitative variation in spatial activity of a <i>Drosophila</i> enhancer. Science Advances, 2020, 6, .	4.7	18
154	Regulation of DNA methyltransferase 1. Advances in Enzyme Regulation, 2006, 46, 224-234.	2.9	17
155	FLEXamers: A Double Tag for Universal Generation of Versatile Peptide-MHC Multimers. Journal of Immunology, 2019, 202, 2164-2171.	0.4	17
156	Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma, 2008, 27, 91-98.	0.5	14
157	HP1Î ² carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus, 2021, 12, 44-57.	0.6	14
158	Developmental differences in genome replication program and origin activation. Nucleic Acids Research, 2020, 48, 12751-12777.	6.5	14
159	MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13, 1-34.	0.6	14
160	Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica. Advanced Functional Materials, 2012, 22, 106-112.	7.8	13
161	Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Scientific Reports, 2020, 10, 12066.	1.6	13
162	Fluorescent Protein Specific Nanotraps to Study Protein–Protein Interactions and Histone-Tail Peptide Binding. , 2012, 911, 475-483.		12

#	Article	IF	CITATIONS
163	<i>N</i> â€Hydroxysuccinimideâ€Modified Ethynylphosphonamidates Enable the Synthesis of Configurationally Defined Protein Conjugates. ChemBioChem, 2020, 21, 113-119.	1.3	12
164	Energy profile of nanobody–GFP complex under force. Physical Biology, 2015, 12, 056009.	0.8	11
165	Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS ONE, 2020, 15, e0229144.	1.1	11
166	Structure and function in the nucleus: Subnuclear trafficking of DNA replication factors. Journal of Cellular Biochemistry, 1999, 75, 15-23.	1.2	10
167	<scp>CRISPR</scp> â€essisted receptor deletion reveals distinct roles for <scp>ERBB</scp> 2 and <scp>ERBB</scp> 3 in skin keratinocytes. FEBS Journal, 2017, 284, 3339-3349.	2.2	10
168	Ethynylphosphonamidates for the Rapid and Cysteineâ€6elective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie, 2019, 131, 11757-11762.	1.6	10
169	Visualization of Genomic Loci in Living Cells with a Fluorescent CRISPR/Cas9 System. Methods in Molecular Biology, 2016, 1411, 407-417.	0.4	9
170	Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naà ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423.	6.5	9
171	A mutagenesis strategy combining systematic alanine scanning with larger mutations to study protein interactions. Analytical Biochemistry, 2008, 373, 176-178.	1.1	8
172	TuPPL: Tub-tag mediated C-terminal protein–protein-ligation using complementary click-chemistry handles. Organic and Biomolecular Chemistry, 2019, 17, 4964-4969.	1.5	8
173	Parallel Force Assay for Protein-Protein Interactions. PLoS ONE, 2014, 9, e115049.	1.1	8
174	Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress. Blood, 2022, 139, 690-703.	0.6	8
175	The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3. International Journal of Molecular Sciences, 2015, 16, 5839-5863.	1.8	7
176	Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Silica Nanoparticles for Biomedical Applications. Chemie-Ingenieur-Technik, 2017, 89, 876-886.	0.4	7
177	Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells. Frontiers in Immunology, 2020, 11, 602802.	2.2	7
178	A Simple and Sensitive High-Content Assay for the Characterization of Antiproliferative Therapeutic Antibodies. SLAS Discovery, 2017, 22, 309-315.	1.4	6
179	Siteâ€Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. ChemBioChem, 2021, 22, 1205-1209.	1.3	6
180	Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophysical Journal, 2022, 121, 977-990.	0.2	6

#	Article	IF	CITATIONS
181	Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus, 2018, 9, 530-542.	0.6	5
182	Tubulin Tyrosine Ligase-Mediated Modification of Proteins. Methods in Molecular Biology, 2019, 2012, 327-355.	0.4	5
183	Visualization and characterization of RNA–protein interactions in living cells. Nucleic Acids Research, 2021, 49, e107-e107.	6.5	5
184	Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. Methods in Molecular Biology, 2020, 2175, 109-121.	0.4	4
185	Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Methods in Molecular Biology, 2018, 1728, 67-93.	0.4	2
186	One-Step Fluorescent Protein Labeling by Tubulin Tyrosine Ligase. Methods in Molecular Biology, 2019, 2033, 167-189.	0.4	2
187	Biomedical Applications: Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 2-2	7.8	Ο