
Gabriel A Vecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4830241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tropical Cyclone Flooding in the Carolinas. Journal of Hydrometeorology, 2022, 23, 53-70.	1.9	2
2	Model Spread in the Tropical Cyclone Frequency and Seed Propensity Index Across Global Warming and ENSO‣ike Perturbations. Geophysical Research Letters, 2022, 49, .	4.0	7
3	Correlation Between Seaâ€Level Rise and Aspects of Future Tropical Cyclone Activity in CMIP6 Models. Earth's Future, 2022, 10, .	6.3	8
4	Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks. Nature Communications, 2021, 12, 846.	12.8	35
5	Compensation Between Cloud Feedback and Aerosolâ€Cloud Interaction in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2020GL091024.	4.0	33
6	The Role of Radiative Interactions in Tropical Cyclone Development under Realistic Boundary Conditions. Journal of Climate, 2021, 34, 2079-2091.	3.2	7
7	Outsize Influence of Central American Orography on Global Climate. AGU Advances, 2021, 2, e2020AV000343.	5.4	15
8	Improved simulation of 19th- and 20th-century North Atlantic hurricane frequency after correcting historical sea surface temperatures. Science Advances, 2021, 7, .	10.3	13
9	Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 2021, 12, 4054.	12.8	42
10	A Comparison of Tropical Cyclone Projections in a High-resolution Global Climate Model and from Downscaling by Statistical and Statistical-deterministic Methods. Journal of Climate, 2021, , 1-48.	3.2	6
11	Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change. Nature Climate Change, 2021, 11, 848-853.	18.8	13
12	Sea Surface Salinity Response to Tropical Cyclones Based on Satellite Observations. Remote Sensing, 2021, 13, 420.	4.0	13
13	Influence of Vertical Wind Shear on the Ocean Response to Tropical Cyclones Based on Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL095451.	4.0	4
14	Hurricane annual cycle controlled by both seeds and genesis probability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
15	Tropical Cyclone Frequency. Earth's Future, 2021, 9, .	6.3	46
16	Azimuthally Averaged Wind and Thermodynamic Structures of Tropical Cyclones in Global Climate Models and Their Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 1575-1595.	3.2	20
17	The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30547-30553.	7.1	325
18	The East Asian Subtropical Jet Stream and Atlantic Tropical Cyclones. Geophysical Research Letters, 2020, 47, e2020GL088851.	4.0	3

#	Article	IF	CITATIONS
19	Impact of volcanic aerosol hemispheric symmetry on Sahel rainfall. Climate Dynamics, 2020, 55, 1733-1758.	3.8	17
20	Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. Journal of the Royal Society Interface, 2020, 17, 20200075.	3.4	8
21	Large-scale control on the frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of global atmospheric models. Climate Dynamics, 2020, 55, 3177-3196.	3.8	36
22	Estuarine Forecasts at Daily Weather to Subseasonal Time Scales. Earth and Space Science, 2020, 7, e2020EA001179.	2.6	5
23	Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science, 2020, 369, 315-319.	12.6	253
24	Characteristics of Model Tropical Cyclone Climatology and the Large-Scale Environment. Journal of Climate, 2020, 33, 4463-4487.	3.2	42
25	Large-scale environmental controls on the seasonal statistics of rapidly intensifying North Atlantic tropical cyclones. Climate Dynamics, 2020, 54, 3907-3925.	3.8	4
26	The typhoon-induced drying of the Maritime Continent. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3983-3988.	7.1	15
27	The Impact of Sea Surface Temperature Biases on North American Precipitation in a High-Resolution Climate Model. Journal of Climate, 2020, 33, 2427-2447.	3.2	14
28	Application of the Cyclone Phase Space to Extratropical Transition in a Global Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001878.	3.8	13
29	Response of Extreme Rainfall for Landfalling Tropical Cyclones Undergoing Extratropical Transition to Projected Climate Change: Hurricane Irene (2011). Earth's Future, 2020, 8, e2019EF001360.	6.3	16
30	Attribution of the impacts of the 2008 flooding in Cedar Rapids (Iowa) to anthropogenic forcing. Environmental Research Letters, 2020, 15, 114057.	5.2	14
31	Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill. Climate Dynamics, 2019, 52, 2721-2743.	3.8	42
32	Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models. Climate Dynamics, 2019, 52, 1965-1982.	3.8	4
33	An asymmetric rainfall response to ENSO in East Asia. Climate Dynamics, 2019, 52, 2303-2318.	3.8	22
34	Climate Impacts From Large Volcanic Eruptions in a Highâ€Resolution Climate Model: The Importance of Forcing Structure. Geophysical Research Letters, 2019, 46, 7690-7699.	4.0	28
35	Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dynamics, 2019, 53, 5999-6033.	3.8	114
36	Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate Models. Journal of Climate, 2019, 32, 6071-6095.	3.2	30

#	Article	IF	CITATIONS
37	Cold waves are getting milder in the northern midlatitudes. Environmental Research Letters, 2019, 14, 114004.	5.2	38
38	Causes of large projected increases in hurricane precipitation rates with global warming. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	66
39	Potential Increase in Hazard From Mediterranean Hurricane Activity With Global Warming. Geophysical Research Letters, 2019, 46, 1754-1764.	4.0	62
40	The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones. Climate Dynamics, 2019, 53, 805-824.	3.8	22
41	Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Climate Dynamics, 2019, 52, 5269-5289.	3.8	24
42	Tropical rainfall predictions from multiple seasonal forecast systems. International Journal of Climatology, 2019, 39, 974-988.	3.5	45
43	Halving warming with idealized solar geoengineering moderates key climate hazards. Nature Climate Change, 2019, 9, 295-299.	18.8	139
44	Recent increases in tropical cyclone intensification rates. Nature Communications, 2019, 10, 635.	12.8	167
45	Temporally Compound Heat Wave Events and Global Warming: An Emerging Hazard. Earth's Future, 2019, 7, 411-427.	6.3	147
46	Epidemic dynamics of respiratory syncytial virus in current and future climates. Nature Communications, 2019, 10, 5512.	12.8	78
47	A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Climate Dynamics, 2019, 53, 7429-7445.	3.8	26
48	Impacts of the Pacific meridional mode on rainfall over the maritime continent and australia: potential for seasonal predictions. Climate Dynamics, 2019, 53, 7185-7199.	3.8	6
49	Multi-model ensemble forecasting of North Atlantic tropical cyclone activity. Climate Dynamics, 2019, 53, 7461-7477.	3.8	17
50	Causes and Probability of Occurrence of Extreme Precipitation Events like Chennai 2015. Journal of Climate, 2018, 31, 3831-3848.	3.2	21
51	Potential for western US seasonal snowpack prediction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1180-1185.	7.1	30
52	Process-Oriented Diagnosis of Tropical Cyclones in High-Resolution GCMs. Journal of Climate, 2018, 31, 1685-1702.	3.2	28
53	Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity. Geophysical Research Letters, 2018, 45, 354-362.	4.0	75
54	Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation. Journal of Advances in Modeling Earth Systems, 2018, 10, 989-1010.	3.8	10

#	Article	IF	CITATIONS
55	The added value of IMERG in characterizing rainfall in tropical cyclones. Atmospheric Research, 2018, 209, 95-102.	4.1	51
56	Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation. Journal of Hydrology, 2018, 559, 698-710.	5.4	54
57	Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones. Journal of Hydrology, 2018, 556, 1026-1037.	5.4	46
58	Impacts of the Pacific Meridional Mode on Landfalling North Atlantic tropical cyclones. Climate Dynamics, 2018, 50, 991-1006.	3.8	8
59	How Skillful are the Multiannual Forecasts of Atlantic Hurricane Activity?. Bulletin of the American Meteorological Society, 2018, 99, 403-413.	3.3	31
60	The Climatological Effect of Saharan Dust on Global Tropical Cyclones in a Fully Coupled GCM. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5538-5559.	3.3	37
61	Improved Simulations of Tropical Pacific Annualâ€Mean Climate in the GFDL FLOR and HiFLOR Coupled GCMs. Journal of Advances in Modeling Earth Systems, 2018, 10, 3176-3220.	3.8	20
62	The Risks of Contracting the Acquisition and Processing of the Nation's Weather and Climate Data to the Private Sector. Bulletin of the American Meteorological Society, 2018, 99, 869-870.	3.3	6
63	100-Year Lower Mississippi Floods in a Global Climate Model: Characteristics and Future Changes. Journal of Hydrometeorology, 2018, 19, 1547-1563.	1.9	24
64	Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 2018, 563, 384-388.	27.8	375
65	Towards Dynamical Seasonal Forecast of Extratropical Transition in the North Atlantic. Geophysical Research Letters, 2018, 45, 12,602.	4.0	3
66	Impact of Ocean Eddy Resolution on the Sensitivity of Precipitation to CO 2 Increase. Geophysical Research Letters, 2018, 45, 7194-7203.	4.0	8
67	Precipitation Sensitivity to Local Variations in Tropical Sea Surface Temperature. Journal of Climate, 2018, 31, 9225-9238.	3.2	31
68	Projection of Landfalling–Tropical Cyclone Rainfall in the Eastern United States under Anthropogenic Warming. Journal of Climate, 2018, 31, 7269-7286.	3.2	37
69	Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. Journal of Climate, 2018, 31, 8281-8303.	3.2	163
70	Lifetime Evolution of Outer Tropical Cyclone Size and Structure as Diagnosed from Reanalysis and Climate Model Data. Journal of Climate, 2018, 31, 7985-8004.	3.2	26
71	On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter. Climate Dynamics, 2018, 51, 3765-3783.	3.8	17
72	An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System. Ocean Science Journal, 2018, 53, 179-189.	1.3	4

#	Article	IF	CITATIONS
73	Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems. Climate Dynamics, 2017, 49, 843-868.	3.8	20
74	Shifting patterns of mild weather in response to projected radiative forcing. Climatic Change, 2017, 140, 649-658.	3.6	18
75	The Central Role of Ocean Dynamics in Connecting the North Atlantic Oscillation to the Extratropical Component of the Atlantic Multidecadal Oscillation. Journal of Climate, 2017, 30, 3789-3805.	3.2	122
76	Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Progress in Oceanography, 2017, 152, 15-49.	3.2	165
77	The Present-Day Simulation and Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North Atlantic. Journal of Climate, 2017, 30, 2739-2756.	3.2	45
78	Seasonal Prediction Skill of Northern Extratropical Surface Temperature Driven by the Stratosphere. Journal of Climate, 2017, 30, 4463-4475.	3.2	37
79	Estimating Decadal Predictability for the Southern Ocean Using the GFDL CM2.1 Model. Journal of Climate, 2017, 30, 5187-5203.	3.2	10
80	Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophysical Research Letters, 2017, 44, 4953-4964.	4.0	102
81	Impacts of the Pacific Meridional Mode on June–August precipitation in the Amazon River Basin. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1936-1945.	2.7	21
82	Decadal temperature predictions over the continental United States: Analysis and Enhancement. Climate Dynamics, 2017, 49, 3587-3604.	3.8	8
83	Contribution of Tropical Cyclones to Rainfall at the Global Scale. Journal of Climate, 2017, 30, 359-372.	3.2	153
84	Summer Enhancement of Arctic Sea Ice Volume Anomalies in the September-Ice Zone. Journal of Climate, 2017, 30, 2341-2362.	3.2	18
85	Dominant Role of Subtropical Pacific Warming in Extreme Eastern Pacific Hurricane Seasons: 2015 and the Future. Journal of Climate, 2017, 30, 243-264.	3.2	79
86	Statistical–Dynamical Seasonal Forecast of Western North Pacific and East Asia Landfalling Tropical Cyclones using the GFDL FLOR Coupled Climate Model. Journal of Climate, 2017, 30, 2209-2232.	3.2	44
87	Weakening of the North American monsoon with global warming. Nature Climate Change, 2017, 7, 806-812.	18.8	105
88	A Weather-Type-Based Cross-Time-Scale Diagnostic Framework for Coupled Circulation Models. Journal of Climate, 2017, 30, 8951-8972.	3.2	28
89	High resolution decadal precipitation predictions over the continental United States for impacts assessment. Journal of Hydrology, 2017, 553, 559-573.	5.4	18
90	Stronger influences of increased CO ₂ on subdaily precipitation extremes than at the daily scale. Geophysical Research Letters, 2017, 44, 7464-7471.	4.0	19

#	Article	IF	CITATIONS
91	Origins of Atlantic decadal swings. Nature, 2017, 548, 284-285.	27.8	28
92	Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME). Journal of Climate, 2017, 30, 9007-9025.	3.2	20
93	Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 2017, 12, 124009.	5.2	330
94	Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 2017, 7, 885-889.	18.8	132
95	Improved management of small pelagic fisheries through seasonal climate prediction. Ecological Applications, 2017, 27, 378-388.	3.8	72
96	Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode. Climate Dynamics, 2017, 48, 631-647.	3.8	48
97	Transient Climate Sensitivity Depends on Base Climate Ocean Circulation. Journal of Climate, 2017, 30, 1493-1504.	3.2	36
98	Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems. Frontiers in Marine Science, 2017, 4, .	2.5	27
99	Could the Recent Zika Epidemic Have Been Predicted?. Frontiers in Microbiology, 2017, 8, 1291.	3.5	35
100	Rapid attribution of theÂAugust 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrology and Earth System Sciences, 2017, 21, 897-921.	4.9	136
101	Impact of an observational time window on coupled data assimilation: simulation with a simple climate model. Nonlinear Processes in Geophysics, 2017, 24, 681-694.	1.3	6
102	Tropical Cyclone Rainfall Changes in a Warmer Climate. , 2017, , 243-255.		7
103	Comment on â€~Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones'. Environmental Research Letters, 2016, 11, 068001.	5.2	4
104	Statistical–Dynamical Seasonal Forecast of North Atlantic and U.S. Landfalling Tropical Cyclones Using the High-Resolution GFDL FLOR Coupled Model. Monthly Weather Review, 2016, 144, 2101-2123.	1.4	55
105	Enhanced warming of the <scp>N</scp> orthwest <scp>A</scp> tlantic <scp>O</scp> cean under climate change. Journal of Geophysical Research: Oceans, 2016, 121, 118-132.	2.6	348
106	Influence of the Tian Shan on Arid Extratropical Asia. Journal of Climate, 2016, 29, 5741-5762.	3.2	50
107	Detection, Attribution, and Projection of Regional Rainfall Changes on (Multi-) Decadal Time Scales: A Focus on Southeastern South America. Journal of Climate, 2016, 29, 8515-8534.	3.2	21
108	Statisticalâ€dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the highâ€resolution GFDL FLOR coupled model. Journal of Advances in Modeling Earth Systems, 2016, 8, 538-565.	3.8	20

#	Article	IF	CITATIONS
109	Seasonal Forecasts of Major Hurricanes and Landfalling Tropical Cyclones using a High-Resolution GFDL Coupled Climate Model. Journal of Climate, 2016, 29, 7977-7989.	3.2	64
110	The Resolution Dependence of Contiguous U.S. Precipitation Extremes in Response to CO2 Forcing. Journal of Climate, 2016, 29, 7991-8012.	3.2	74
111	Simulated Connections between ENSO and Tropical Cyclones near Guam in a High-Resolution GFDL Coupled Climate Model: Implications for Seasonal Forecasting. Journal of Climate, 2016, 29, 8231-8248.	3.2	3
112	An Assessment of Multimodel Simulations for the Variability of Western North Pacific Tropical Cyclones and Its Association with ENSO. Journal of Climate, 2016, 29, 6401-6423.	3.2	31
113	The Impact of Horizontal Resolution on North American Monsoon Gulf of California Moisture Surges in a Suite of Coupled Global Climate Models. Journal of Climate, 2016, 29, 7911-7936.	3.2	32
114	Assessing GFDL highâ€resolution climate model water and energy budgets from AMIP simulations over Africa. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8444-8459.	3.3	5
115	Influences of Natural Variability and Anthropogenic Forcing on the Extreme 2015 Accumulated Cyclone Energy in the Western North Pacific. Bulletin of the American Meteorological Society, 2016, 97, S131-S135.	3.3	29
116	The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nature Geoscience, 2016, 9, 509-512.	12.9	197
117	The Roles of Radiative Forcing, Sea Surface Temperatures, and Atmospheric and Land Initial Conditions in U.S. Summer Warming Episodes. Journal of Climate, 2016, 29, 4121-4135.	3.2	36
118	Impact of Strong ENSO on Regional Tropical Cyclone Activity in a High-Resolution Climate Model in the North Pacific and North Atlantic Oceans. Journal of Climate, 2016, 29, 2375-2394.	3.2	40
119	Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model*. Journal of Climate, 2016, 29, 1391-1415.	3.2	69
120	The Pacific Meridional Mode and the Occurrence of Tropical Cyclones in the Western North Pacific. Journal of Climate, 2016, 29, 381-398.	3.2	122
121	Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model*. Journal of Climate, 2015, 28, 9058-9079.	3.2	181
122	Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming Hiatus. Bulletin of the American Meteorological Society, 2015, 96, S25-S28.	3.3	17
123	Investigating the Influence of Anthropogenic Forcing and Natural Variability on the 2014 Hawaiian Hurricane Season. Bulletin of the American Meteorological Society, 2015, 96, S115-S119.	3.3	39
124	The Response of the Tropical Atlantic and West African Climate to Saharan Dust in a Fully Coupled GCM. Journal of Climate, 2015, 28, 7071-7092.	3.2	30
125	Response of the Equatorial Pacific Seasonal Cycle to Orbital Forcing. Journal of Climate, 2015, 28, 9258-9276.	3.2	20
126	Beyond Weather Time-Scale Prediction for Hurricane Sandy and Super Typhoon Haiyan in a Global Climate Model. Monthly Weather Review, 2015, 143, 524-535.	1.4	56

#	Article	IF	CITATIONS
127	The Seasonality of the Great Plains Low-Level Jet and ENSO Relationship. Journal of Climate, 2015, 28, 4525-4544.	3.2	54
128	Nonlinear Zonal Wind Response to ENSO in the CMIP5 Models: Roles of the Zonal and Meridional Shift of the ITCZ/SPCZ and the Simulated Climatological Precipitation*. Journal of Climate, 2015, 28, 8556-8573.	3.2	33
129	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	3.3	158
130	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	3.3	2
131	North Atlantic Hurricane Activity: Past, Present and Future. World Scientific Series on Asia-Pacific Weather and Climate, 2015, , 285-301.	0.2	4
132	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	18.8	479
133	Projected Twenty-First-Century Changes in the Length of the Tropical Cyclone Season. Journal of Climate, 2015, 28, 6181-6192.	3.2	26
134	The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model. Journal of Climate, 2015, 28, 5351-5364.	3.2	92
135	Seasonal Predictability of Extratropical Storm Tracks in GFDL's High-Resolution Climate Prediction Model. Journal of Climate, 2015, 28, 3592-3611.	3.2	71
136	Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model. Journal of Climate, 2015, 28, 2044-2062.	3.2	141
137	A Link between the Hiatus in Global Warming and North American Drought. Journal of Climate, 2015, 28, 3834-3845.	3.2	91
138	Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 2015, 5, 1114-1120.	18.8	97
139	Seasonality and Predictability of the Indian Ocean Dipole Mode: ENSO Forcing and Internal Variability. Journal of Climate, 2015, 28, 8021-8036.	3.2	114
140	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	3.3	8
141	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
142	Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. Journal of Climate, 2015, 28, 7203-7224.	3.2	371
143	Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Progress in Oceanography, 2015, 137, 219-236.	3.2	75
144	Towards predictive understanding of regional climate change. Nature Climate Change, 2015, 5, 921-930.	18.8	253

#	Article	IF	CITATIONS
145	Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming Hiatus. Bulletin of the American Meteorological Society, 2015, 96, S25-S28.	3.3	0
146	Investigating the Influence of Anthropogenic Forcing and Natural Variability on the 2014 Hawaiian Hurricane Season. Bulletin of the American Meteorological Society, 2015, 96, S115-S119.	3.3	0
147	Intense Precipitation Events Associated with Landfalling Tropical Cyclones in Response to a Warmer Climate and Increased CO2. Journal of Climate, 2014, 27, 4642-4654.	3.2	81
148	Sensitivity of Tropical Cyclone Rainfall to Idealized Global-Scale Forcings*. Journal of Climate, 2014, 27, 4622-4641.	3.2	98
149	Reply to Comments on "Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations― Journal of Climate, 2014, 27, 490-492.	3.2	2
150	Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model. Journal of Climate, 2014, 27, 9171-9196.	3.2	109
151	North Atlantic Tropical Cyclones and U.S. Flooding. Bulletin of the American Meteorological Society, 2014, 95, 1381-1388.	3.3	107
152	Subseasonal Atmospheric Variability and El Niño Waveguide Warming: Observed Effects of the Madden–Julian Oscillation and Westerly Wind Events*. Journal of Climate, 2014, 27, 3619-3642.	3.2	44
153	Predicting a Decadal Shift in North Atlantic Climate Variability Using the GFDL Forecast System. Journal of Climate, 2014, 27, 6472-6496.	3.2	84
154	Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 2014, 95, 243-267.	3.3	454
155	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	18.8	1,572
156	Next Season's Hurricanes. Science, 2014, 343, 618-619.	12.6	30
157	ENSO Modulation: Is It Decadally Predictable?. Journal of Climate, 2014, 27, 2667-2681.	3.2	126
158	On the Seasonal Forecasting of Regional Tropical Cyclone Activity. Journal of Climate, 2014, 27, 7994-8016.	3.2	340
159	Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 2014, 27, 8034-8054.	3.2	115
160	How Well Do Global Climate Models Simulate the Variability of Atlantic Tropical Cyclones Associated with ENSO?. Journal of Climate, 2014, 27, 5673-5692.	3.2	45
161	Uncertainties in the timing of unprecedented climates. Nature, 2014, 511, E3-E5.	27.8	63
162	The poleward migration of the location of tropical cyclone maximum intensity. Nature, 2014, 509, 349-352.	27.8	516

#	Article	IF	CITATIONS
163	Comparison of global objective analyzed T-S fields of the upper ocean for 2008–2011. Journal of Marine Systems, 2014, 137, 13-20.	2.1	7
164	Near-term Climate Change: Projections and Predictability. , 2014, , 953-1028.		196
165	Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophysical Research Letters, 2014, 41, 5208-5215.	4.0	83
166	Detectability of Changes in the Walker Circulation in Response to Global Warming*. Journal of Climate, 2013, 26, 4038-4048.	3.2	78
167	The Impact of Anthropogenic Climate Change on North Atlantic Tropical Cyclone Tracks*. Journal of Climate, 2013, 26, 4088-4095.	3.2	58
168	Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. Journal of Climate, 2013, 26, 6591-6617.	3.2	316
169	Have Aerosols Caused the Observed Atlantic Multidecadal Variability?. Journals of the Atmospheric Sciences, 2013, 70, 1135-1144.	1.7	282
170	Impacts of Atmospheric Temperature Trends on Tropical Cyclone Activity. Journal of Climate, 2013, 26, 3877-3891.	3.2	83
171	Changing Frequency of Heavy Rainfall over the Central United States. Journal of Climate, 2013, 26, 351-357.	3.2	139
172	Multiseason Lead Forecast of the North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE). Journal of Climate, 2013, 26, 3631-3643.	3.2	27
173	Response to CO2 Doubling of the Atlantic Hurricane Main Development Region in a High-Resolution Climate Model. Journal of Climate, 2013, 26, 4322-4334.	3.2	5
174	A Predictable AMO-Like Pattern in the GFDL Fully Coupled Ensemble Initialization and Decadal Forecasting System. Journal of Climate, 2013, 26, 650-661.	3.2	97
175	Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations. Journal of Climate, 2013, 26, 5337-5357.	3.2	57
176	Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the United States of America, 2013, 110, 7574-7579.	7.1	253
177	Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models. Journal of Climate, 2013, 26, 3231-3240.	3.2	150
178	ENSO Transition, Duration, and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a Conceptual Model. Journal of Climate, 2013, 26, 9462-9476.	3.2	124
179	Comment on "Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N― Science, 2012, 338, 604-604.	12.6	8
180	Mean Climate Controls on the Simulated Response of ENSO to Increasing Greenhouse Gases. Journal of Climate, 2012, 25, 7399-7420.	3.2	110

#	Article	IF	CITATIONS
181	Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 2012, 25, 2755-2781.	3.2	454
182	Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Climate Change, 2012, 2, 604-607.	18.8	129
183	North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE): Statistical Modeling and Sensitivity to Sea Surface Temperature Changes. Journal of Climate, 2012, 25, 625-637.	3.2	50
184	U.S. Landfalling and North Atlantic Hurricanes: Statistical Modeling of Their Frequencies and Ratios. Monthly Weather Review, 2012, 140, 44-65.	1.4	46
185	Biases in the Atlantic ITCZ in Seasonal–Interannual Variations for a Coarse- and a High-Resolution Coupled Climate Model. Journal of Climate, 2012, 25, 5494-5511.	3.2	59
186	Estimating Annual Numbers of Atlantic Hurricanes Missing from the HURDAT Database (1878–1965) Using Ship Track Density. Journal of Climate, 2011, 24, 1736-1746.	3.2	136
187	Is the recorded increase in short-duration North Atlantic tropical storms spurious?. Journal of Geophysical Research, 2011, 116, .	3.3	51
188	The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies. Paleoceanography, 2011, 26, .	3.0	77
189	The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	123
190	The impacts of changing transport and precipitation on pollutant distributions in a future climate. Journal of Geophysical Research, 2011, 116, .	3.3	47
191	Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations. Journal of Advances in Modeling Earth Systems, 2011, 3, .	3.8	11
192	Observational Evidence for Oceanic Controls on Hurricane Intensity. Journal of Climate, 2011, 24, 1138-1153.	3.2	150
193	North Atlantic Tropical Storm Frequency Response to Anthropogenic Forcing: Projections and Sources of Uncertainty. Journal of Climate, 2011, 24, 3224-3238.	3.2	51
194	Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	93
195	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	3.2	272
196	Statistical–Dynamical Predictions of Seasonal North Atlantic Hurricane Activity. Monthly Weather Review, 2011, 139, 1070-1082.	1.4	128
197	WHY CLIMATE MODELERS SHOULD WORRY ABOUT ATMOSPHERIC AND OCEANIC WEATHER. World Scientific Series on Asia-Pacific Weather and Climate, 2011, , 511-523.	0.2	8
198	Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dynamics, 2010, 35, 299-313.	3.8	65

#	Article	IF	CITATIONS
199	Basin patterns of global sea level changes for 2004–2007. Journal of Marine Systems, 2010, 80, 115-124.	2.1	13
200	El Niño and our future climate: where do we stand?. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 260-270.	8.1	152
201	The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 2010, 3, 391-397.	12.9	1,029
202	Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science, 2010, 327, 454-458.	12.6	886
203	Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21277-21282.	7.1	433
204	Submonthly Indian Ocean Cooling Events and Their Interaction with Large-Scale Conditions. Journal of Climate, 2010, 23, 700-716.	3.2	25
205	Indian Ocean Dipole Response to Global Warming: Analysis of Ocean–Atmospheric Feedbacks in a Coupled Model*. Journal of Climate, 2010, 23, 1240-1253.	3.2	122
206	Retrospective Forecasts of the Hurricane Season Using a Global Atmospheric Model Assuming Persistence of SST Anomalies. Monthly Weather Review, 2010, 138, 3858-3868.	1.4	82
207	Global Warming Pattern Formation: Sea Surface Temperature and Rainfall*. Journal of Climate, 2010, 23, 966-986.	3.2	915
208	Reconciling Differing Views of Tropical Pacific Climate Change. Eos, 2010, 91, 141-142.	0.1	67
209	How ocean color can steer Pacific tropical cyclones. Geophysical Research Letters, 2010, 37, .	4.0	35
210	Impact of Duration Thresholds on Atlantic Tropical Cyclone Counts*. Journal of Climate, 2010, 23, 2508-2519.	3.2	222
211	Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices. Monthly Weather Review, 2010, 138, 2681-2705.	1.4	100
212	Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming*. Journal of Climate, 2010, 23, 4651-4668.	3.2	668
213	Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific. Journal of Marine Research, 2009, 67, 701-729.	0.3	10
214	Climate Response of the Equatorial Pacific to Global Warming. Journal of Climate, 2009, 22, 4873-4892.	3.2	260
215	Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM. Journal of Climate, 2009, 22, 6653-6678.	3.2	550
216	Oceanâ€Atmosphere Interactions During Cyclone Nargis. Eos, 2009, 90, 53-54.	0.1	122

#	Article	IF	CITATIONS
217	Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geoscience, 2008, 1, 359-364.	12.9	334
218	Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophysical Research Letters, 2008, 35, .	4.0	54
219	Examining the Tropical Pacific's Response to Global Warming. Eos, 2008, 89, 81-83.	0.1	198
220	Whither Hurricane Activity?. Science, 2008, 322, 687-689.	12.6	162
221	On Estimates of Historical North Atlantic Tropical Cyclone Activity*. Journal of Climate, 2008, 21, 3580-3600.	3.2	233
222	Indian Ocean Variability in the GFDL Coupled Climate Model. Journal of Climate, 2007, 20, 2895-2916.	3.2	63
223	Global Warming and the Weakening of the Tropical Circulation. Journal of Climate, 2007, 20, 4316-4340.	3.2	1,036
224	An Observing System Simulation Experiment for the Indian Ocean. Journal of Climate, 2007, 20, 3300-3319.	3.2	30
225	The Role of the Indonesian Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled Climate Model. Journal of Climate, 2007, 20, 2434-2451.	3.2	57
226	Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science, 2007, 316, 1181-1184.	12.6	1,792
227	Expansion of the Hadley cell under global warming. Geophysical Research Letters, 2007, 34, .	4.0	652
228	Increased tropical Atlantic wind shear in model projections of global warming. Geophysical Research Letters, 2007, 34, .	4.0	235
229	Correction to "Expansion of the Hadley cell under global warming― Geophysical Research Letters, 2007, 34, .	4.0	26
230	Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 2007, 450, 1066-1070.	27.8	376
231	Reassessing the role of stochastic forcing in the 1997-1998 El Niño. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	54
232	The Termination of the 1997–98 El Niño. Part II: Mechanisms of Atmospheric Change. Journal of Climate, 2006, 19, 2647-2664.	3.2	66
233	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	3.2	269
234	The Termination of the 1997–98 El Niño. Part I: Mechanisms of Oceanic Change*. Journal of Climate, 2006, 19, 2633-2646.	3.2	59

#	Article	IF	CITATIONS
235	Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 2006, 441, 73-76.	27.8	894
236	Ocean–Atmosphere Covariability in the Western Arabian Sea*. Journal of Climate, 2004, 17, 1213-1224.	3.2	93
237	The Madden-Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophysical Research Letters, 2004, 31, .	4.0	87
238	Sea Surface Temperature of the Bay of Bengal Derived from the TRMM Microwave Imager* [,] ⁺ . Journal of Atmospheric and Oceanic Technology, 2004, 21, 1283-1290.	1.3	45
239	On the termination of the 2002-03 El Ni $ ilde{A}$ ±o event. Geophysical Research Letters, 2003, 30, .	4.0	42
240	The Influence of the Madden–Julian Oscillation on Precipitation in Oregon and Washington*. Weather and Forecasting, 2003, 18, 600-613.	1.4	133
241	Monsoon Breaks and Subseasonal Sea Surface Temperature Variability in the Bay of Bengal*. Journal of Climate, 2002, 15, 1485-1493.	3.2	208
242	El Niño and La Niña-equatorial Pacific thermocline depth and sea surface temperature anomalies, 1986-98. Geophysical Research Letters, 2001, 28, 1051-1054.	4.0	39
243	January 1999 Indian Ocean Cooling Event. Geophysical Research Letters, 2001, 28, 3717-3720.	4.0	80
244	Central equatorial Pacific zonal currents. II: The seasonal cycle and the boreal spring surface eastward surge. Journal of Marine Research, 2001, 59, 921-948.	0.3	8
245	Eastward surface jets in the central equatorial Pacific, November 1991–March 1992. Journal of Marine Research, 2000, 58, 735-754.	0.3	4
246	Tropical Pacific Sea Surface Temperature Anomalies, El Niño, and Equatorial Westerly Wind Events*. Journal of Climate, 2000, 13, 1814-1830.	3.2	177
247	On the termination of El Niño. Geophysical Research Letters, 1999, 26, 1593-1596.	4.0	127
248	Westerly Wind Events in the Tropical Pacific, 1986–95*. Journal of Climate, 1997, 10, 3131-3156.	3.2	159
249	Interannual Indian Rainfall Variability and Indian Ocean Sea Surface Temperature Anomalies. Geophysical Monograph Series, 0, , 247-259.	0.1	32
250	Investigating the Causes and Impacts of Convective Aggregation in a High Resolution Atmospheric GCM. Journal of Advances in Modeling Earth Systems, 0, , e2021MS002675.	3.8	1