L Darryl Quarles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4829068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nature Genetics, 2006, 38, 1310-1315.	21.4	1,063
2	Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. Journal of Bone and Mineral Research, 1992, 7, 683-692.	2.8	842
3	Rapid Loss of Vertebral Mineral Density after Renal Transplantation. New England Journal of Medicine, 1991, 325, 544-550.	27.0	622
4	Fibroblast Growth Factor 23 Is a Counter-Regulatory Phosphaturic Hormone for Vitamin D. Journal of the American Society of Nephrology: JASN, 2006, 17, 1305-1315.	6.1	584
5	Regulation and Function of the FGF23/Klotho Endocrine Pathways. Physiological Reviews, 2012, 92, 131-155.	28.8	471
6	Pathogenic role of Fgf23 in <i>Hyp</i> mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E38-E49.	3.5	457
7	Regulation of Fibroblastic Growth Factor 23 Expression but Not Degradation by PHEX. Journal of Biological Chemistry, 2003, 278, 37419-37426.	3.4	453
8	Endocrine functions of bone in mineral metabolism regulation. Journal of Clinical Investigation, 2008, 118, 3820-3828.	8.2	406
9	How Fibroblast Growth Factor 23 Works. Journal of the American Society of Nephrology: JASN, 2007, 18, 1637-1647.	6.1	355
10	Serum FGF23 Levels in Normal and Disordered Phosphorus Homeostasis. Journal of Bone and Mineral Research, 2003, 18, 1227-1234.	2.8	323
11	Hemodialysis-associated subclavian vein stenosis. Kidney International, 1988, 33, 1156-1159.	5.2	295
12	FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1-E9.	3.5	292
13	Achieving NKF-K/DOQIâ,,¢ bone metabolism and disease treatment goals with cinacalcet HCl. Kidney International, 2005, 67, 760-771.	5.2	290
14	Identification of a Novel Extracellular Cation-sensing G-protein-coupled Receptor. Journal of Biological Chemistry, 2005, 280, 40201-40209.	3.4	271
15	The Calcimimetic AMG 073 as a Potential Treatment for Secondary Hyperparathyroidism of End-Stage Renal Disease. Journal of the American Society of Nephrology: JASN, 2003, 14, 575-583.	6.1	245
16	Role of Hyperphosphatemia and 1,25-Dihydroxyvitamin D in Vascular Calcification and Mortality in Fibroblastic Growth Factor 23 Null Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 2116-2124.	6.1	241
17	Prospective trial of pulse oral versus intravenous calcitriol treatment of hyperparathyroidism in ESRD. Kidney International, 1994, 45, 1710-1721.	5.2	230
18	Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease. Experimental Cell Research, 2012, 318, 1040-1048.	2.6	229

#	Article	IF	CITATIONS
19	Bone proteins PHEX and DMP1 regulate fibroblastic growth factor <i>Fgf23</i> expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB Journal, 2011, 25, 2551-2562.	0.5	228
20	Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nature Reviews Endocrinology, 2012, 8, 276-286.	9.6	225
21	GPRC6A Null Mice Exhibit Osteopenia, Feminization and Metabolic Syndrome. PLoS ONE, 2008, 3, e3858.	2.5	215
22	Association of Body Mass Index with Outcomes in Patients with CKD. Journal of the American Society of Nephrology: JASN, 2014, 25, 2088-2096.	6.1	196
23	GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. Journal of Bone and Mineral Research, 2011, 26, 1680-1683.	2.8	194
24	Joint mouse–human phenome-wide association to test gene function and disease risk. Nature Communications, 2016, 7, 10464.	12.8	190
25	Blood Pressure and Mortality in U.S. Veterans With Chronic Kidney Disease. Annals of Internal Medicine, 2013, 159, 233.	3.9	182
26	Cholecalciferol Supplementation Alters Calcitriol-Responsive Monocyte Proteins and Decreases Inflammatory Cytokines in ESRD. Journal of the American Society of Nephrology: JASN, 2010, 21, 353-361.	6.1	168
27	A Comparative Transcriptome Analysis Identifying FGF23 Regulated Genes in the Kidney of a Mouse CKD Model. PLoS ONE, 2012, 7, e44161.	2.5	164
28	GPRC6A Mediates the Non-genomic Effects of Steroids. Journal of Biological Chemistry, 2010, 285, 39953-39964.	3.4	163
29	Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Journal of Clinical Investigation, 2003, 111, 1029-1037.	8.2	138
30	Effects of Cinacalcet and Concurrent Low-Dose Vitamin D on FGF23 Levels in ESRD. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 110-116.	4.5	136
31	Calcimimetics as an Adjuvant Treatment for Familial Hypophosphatemic Rickets. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 658-664.	4.5	135
32	Musculoskeletal Complications After Renal Transplantation: Pathogenesis and Treatment. American Journal of Kidney Diseases, 1992, 19, 99-120.	1.9	134
33	FGFR3 and FGFR4 Do not Mediate Renal Effects of FGF23. Journal of the American Society of Nephrology: JASN, 2008, 19, 2342-2350.	6.1	123
34	PHOSPHORUS METABOLISM AND MANAGEMENT IN CHRONIC KIDNEY DISEASE: Role of Fibroblast Growth Factor 23 in Phosphate Homeostasis and Pathogenesis of Disordered Mineral Metabolism in Chronic Kidney Disease. Seminars in Dialysis, 2007, 20, 302-308.	1.3	122
35	Calcium Regulates FGF-23 Expression in Bone. Endocrinology, 2013, 154, 4469-4482.	2.8	115
36	Conditional deletion of <i>Pkd1</i> in osteocytes disrupts skeletal mechanosensing in mice. FASEB Journal, 2011, 25, 2418-2432.	0.5	110

#	Article	IF	CITATIONS
37	Cloning and Sequencing of Human PEX from a Bone cDNA Library: Evidence for Its Developmental Stage-Specific Regulation in Osteoblasts. Journal of Bone and Mineral Research, 1997, 12, 1009-1017.	2.8	108
38	Emerging role of fibroblast growth factor 23 in a bone–kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Current Opinion in Nephrology and Hypertension, 2007, 16, 329-335.	2.0	105
39	A Distinct Cation-Sensing Mechanism in MC3T3-E1 Osteoblasts Functionally Related to the Calcium Receptor. Journal of Bone and Mineral Research, 1997, 12, 393-402.	2.8	104
40	Inhibition of MEPE cleavage by Phex. Biochemical and Biophysical Research Communications, 2002, 297, 38-45.	2.1	103
41	Evidence for a bone-kidney axis regulating phosphate homeostasis. Journal of Clinical Investigation, 2003, 112, 642-646.	8.2	102
42	Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Current Medicinal Chemistry, 2021, 28, 1489-1507.	2.4	101
43	Rickets in Cation-Sensing Receptor-Deficient Mice: An Unexpected Skeletal Phenotype. Endocrinology, 2001, 142, 3996-4005.	2.8	96
44	Calcium-Sensing Receptor Activation of Rho Involves Filamin and Rho-Guanine Nucleotide Exchange Factor. Endocrinology, 2002, 143, 3830-3838.	2.8	95
45	Impaired kidney growth in low-birth-weight children: Distinct effects of maturity and weight for gestational age. Kidney International, 2005, 68, 731-740.	5.2	95
46	Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. Journal of Cellular Biochemistry, 2005, 94, 307-316.	2.6	93
47	Comparison of treatments for mild secondary hyperparathyroidism in hemodialysis patients. Kidney International, 2000, 57, 282-292.	5.2	92
48	Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. Journal of Bone and Mineral Research, 2012, 27, 38-46.	2.8	92
49	Aluminum-Induced DNA synthesis in osteobalsts: Mediation by a G-protein coupled cation sensing mechanism. Journal of Cellular Biochemistry, 1994, 56, 106-117.	2.6	87
50	Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E508-E517.	3.5	87
51	Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. Journal of Cell Science, 2012, 125, 1945-57.	2.0	86
52	Overexpression of Phex in Osteoblasts Fails to Rescue the Hyp Mouse Phenotype. Journal of Biological Chemistry, 2002, 277, 3686-3697.	3.4	83
53	Multiligand Specificity and Wide Tissue Expression of GPRC6A Reveals New Endocrine Networks. Endocrinology, 2012, 153, 2062-2069.	2.8	83
54	Cation Sensing Receptors in Bone: A Novel Paradigm for Regulating Bone Remodeling?. Journal of Bone and Mineral Research, 1997, 12, 1971-1974.	2.8	81

#	Article	IF	CITATIONS
55	A Novel Cation-Sensing Mechanism in Osteoblasts Is a Molecular Target for Strontium. Journal of Bone and Mineral Research, 2004, 19, 862-869.	2.8	81
56	Role of Matrix Extracellular Phosphoglycoprotein in the Pathogenesis of X-Linked Hypophosphatemia. Journal of the American Society of Nephrology: JASN, 2005, 16, 1645-1653.	6.1	81
57	Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in <i>Hyp</i> mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1636-E1644.	3.5	81
58	Phosphorylated acidic serine–aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. Journal of Endocrinology, 2007, 192, 261-267.	2.6	80
59	Effects of genistein on expression of bone markers during MC3T3-E1 osteoblastic cell differentiation. Journal of Nutritional Biochemistry, 2003, 14, 342-349.	4.2	76
60	Molecular to pharmacologic control of osteoblast proliferation and differentiation. Journal of Cellular Biochemistry, 1994, 55, 310-320.	2.6	73
61	β-Arrestin- and G Protein Receptor Kinase-Mediated Calcium-Sensing Receptor Desensitization. Molecular Endocrinology, 2005, 19, 1078-1087.	3.7	72
62	GPRC6A regulates prostate cancer progression. Prostate, 2012, 72, 399-409.	2.3	69
63	Antiandrogen Gold Nanoparticles Dual-Target and Overcome Treatment Resistance in Hormone-Insensitive Prostate Cancer Cells. Bioconjugate Chemistry, 2012, 23, 1507-1512.	3.6	68
64	Failure to Detect the Extracellular Calcium-Sensing Receptor (CasR) in Human Osteoblast Cell Lines. Journal of Bone and Mineral Research, 1999, 14, 1310-1319.	2.8	67
65	GPRC6A Mediates the Effects of l-Arginine on Insulin Secretion in Mouse Pancreatic Islets. Endocrinology, 2012, 153, 4608-4615.	2.8	67
66	GPRC6A: Jack of all metabolism (or master of none). Molecular Metabolism, 2017, 6, 185-193.	6.5	67
67	Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Journal of Clinical Investigation, 2003, 111, 1029-1037.	8.2	67
68	Dose-Dependent Effects of <i>Runx2</i> on Bone Development. Journal of Bone and Mineral Research, 2009, 24, 1889-1904.	2.8	66
69	Evidence for a bone-kidney axis regulating phosphate homeostasis. Journal of Clinical Investigation, 2003, 112, 642-646.	8.2	66
70	Staphylococcus Aureus Bacteremia in Patients on Chronic Hemodialysis. American Journal of Kidney Diseases, 1985, 6, 412-419.	1.9	63
71	Non-suppressible parathyroid hormone secretion is related to gland size in uremic secondary hyperparathyroidism. Kidney International, 1996, 50, 1663-1671.	5.2	63
72	Polycystin-1 Regulates Skeletogenesis through Stimulation of the Osteoblast-specific Transcription Factor RUNX2-II. Journal of Biological Chemistry, 2008, 283, 12624-12634.	3.4	61

#	Article	IF	CITATIONS
73	Conditional Disruption of Pkd1 in Osteoblasts Results in Osteopenia Due to Direct Impairment of Bone Formation. Journal of Biological Chemistry, 2010, 285, 1177-1187.	3.4	61
74	Oral calcitriol and calcium: Efficient therapy for uremic hyperparathyroidism. Kidney International, 1988, 34, 840-844.	5.2	57
75	Aluminum-Induced Mitogenesis in MC3T3-E1 Osteoblasts: Potential Mechanism Underlying Neoosteogenesis*. Endocrinology, 1991, 128, 3144-3151.	2.8	57
76	Pathophysiology of X-Linked Hypophosphatemia, Tumor-Induced Osteomalacia, and Autosomal Dominant Hypophosphatemia: A PerPHEXing Problem. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 494-496.	3.6	57
77	FGF23 from bench to bedside. American Journal of Physiology - Renal Physiology, 2016, 310, F1168-F1174.	2.7	56
78	Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport. PLoS ONE, 2016, 11, e0147845.	2.5	56
79	Late Vascular Complications of the Subclavian Dialysis Catheter. American Journal of Kidney Diseases, 1986, 7, 225-228.	1.9	55
80	An experimental canine model of osteonecrosis: Characterization of the repair process. Journal of Orthopaedic Research, 1993, 11, 350-357.	2.3	54
81	The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Research, 2016, 4, 16011.	11.4	54
82	Spectrum of disease in familial focal and segmental glomerulosclerosis. Kidney International, 1999, 56, 1863-1871.	5.2	53
83	Coordinated Maturational Regulation of PHEX and Renal Phosphate Transport Inhibitory Activity: Evidence for the Pathophysiological Role of PHEX in X-Linked Hypophosphatemia. Journal of Bone and Mineral Research, 1999, 14, 2027-2035.	2.8	52
84	Structural and Functional Evidence for Testosterone Activation of GPRC6A in Peripheral Tissues. Molecular Endocrinology, 2015, 29, 1759-1773.	3.7	52
85	FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. Journal of Molecular and Cellular Cardiology, 2020, 138, 66-74.	1.9	50
86	Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Current Opinion in Nephrology and Hypertension, 2003, 12, 349-355.	2.0	49
87	Calcimimetics or vitamin D analogs for suppressing parathyroid hormone in end-stage renal disease: time for a paradigm shift?. Nature Clinical Practice Nephrology, 2009, 5, 24-33.	2.0	49
88	Novel Bone Endocrine Networks Integrating Mineral and Energy Metabolism. Current Osteoporosis Reports, 2013, 11, 391-399.	3.6	49
89	Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis. Journal of Clinical Investigation, 2017, 128, 157-174.	8.2	49
90	Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signalâ€regulated kinases 1/2 activity. Journal of Cellular Biochemistry, 2008, 104, 1853-1864.	2.6	48

#	Article	IF	CITATIONS
91	CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. Journal of Experimental and Clinical Cancer Research, 2017, 36, 90.	8.6	47
92	Role of serum in the developmental expression of alkaline phosphatase in MC3T3-E1 osteoblasts. Journal of Cellular Physiology, 1994, 158, 467-475.	4.1	46
93	Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23. Journal of Biological Chemistry, 2015, 290, 10447-10459.	3.4	46
94	Impaired osteoblast function in <i>GPRC6A</i> null mice. Journal of Bone and Mineral Research, 2010, 25, 1092-1102.	2.8	44
95	Effect of asymmetric dimethylarginine on osteoblastic differentiation. Kidney International, 2001, 60, 1699-1704.	5.2	43
96	IRES-dependent translational control ofCbfa1/Runx2 expression. Journal of Cellular Biochemistry, 2003, 88, 493-505.	2.6	43
97	Kif3a Deficiency Reverses the Skeletal Abnormalities in Pkd1 Deficient Mice by Restoring the Balance Between Osteogenesis and Adipogenesis. PLoS ONE, 2010, 5, e15240.	2.5	42
98	Cardiovascular Interactions between Fibroblast Growth Factor-23 and Angiotensin II. Scientific Reports, 2018, 8, 12398.	3.3	41
99	'Dem bones' are made for more than walking. Nature Medicine, 2011, 17, 428-430.	30.7	40
100	Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Current Opinion in Nephrology and Hypertension, 2019, 28, 16-25.	2.0	38
101	Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites. Kidney International, 2012, 82, 1061-1070.	5.2	36
102	Aluminum-induced neo-osteogenesis: A generalized process affecting trabecular networking in the axial skeleton. Journal of Bone and Mineral Research, 1990, 5, 625-635.	2.8	35
103	The Role of Fibroblast Growth Factor-23 in Cardiorenal Syndrome. Nephron Clinical Practice, 2013, 123, 194-201.	2.3	35
104	Preventing bone loss after renal transplantation with bisphosphonates: We can… but should we?. Kidney International, 2000, 57, 735-737.	5.2	34
105	Differential regulation of receptor-stimulated cyclic adenosine monophosphate production by polyvalent cations in MC3T3-E1 osteoblasts. Journal of Bone and Mineral Research, 1996, 11, 789-799.	2.8	34
106	Role of Fibroblast Growth Factor-23 in Innate Immune Responses. Frontiers in Endocrinology, 2018, 9, 320.	3.5	34
107	Survival Advantage in Black Versus White Men With CKD: Effect of Estimated GFR and Case Mix. American Journal of Kidney Diseases, 2013, 62, 228-235.	1.9	33
108	Uremic Tumoral Calcinosis: Preliminary Observations Suggesting an Association With Aberrant Vitamin D Homeostasis. American Journal of Kidney Diseases, 1991, 18, 706-710.	1.9	32

#	Article	IF	CITATIONS
109	Aluminum is a weak agonist for the calcium-sensing receptor. Kidney International, 1999, 55, 1750-1758.	5.2	32
110	Evidence for FGF23 Involvement in a Bone-Kidney Axis Regulating Bone Mineralization and Systemic Phosphate and Vitamin D Homeostasis. Advances in Experimental Medicine and Biology, 2012, 728, 65-83.	1.6	30
111	Cloning and Characterization of the Proximal Murine <i>Phex</i> Promoter. Endocrinology, 2001, 142, 3987-3995.	2.8	29
112	Enhanced FGF23 production in mice expressing PI3Kâ€insensitive GSK3 is normalized by βâ€blocker treatment. FASEB Journal, 2016, 30, 994-1001.	0.5	29
113	Anabolic effects of a C protein–coupled receptor kinase inhibitor expressed in osteoblasts. Journal of Clinical Investigation, 2002, 109, 1361-1371.	8.2	29
114	Targeted overexpression of G protein-coupled receptor kinase-2 in osteoblasts promotes bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E826-E834.	3.5	28
115	A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Science Signaling, 2016, 9, ra113.	3.6	27
116	Cardiovascular Effects of Renal Distal Tubule Deletion of the FGF Receptor 1 Gene. Journal of the American Society of Nephrology: JASN, 2018, 29, 69-80.	6.1	26
117	Human GPRC6A Mediates Testosterone-Induced Mitogen-Activated Protein Kinases and mTORC1 Signaling in Prostate Cancer Cells. Molecular Pharmacology, 2019, 95, 563-572.	2.3	26
118	FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. ENeuro, 2019, 6, ENEURO.0469-18.2019.	1.9	24
119	A Systems Biology Preview of the Relationships Between Mineral and Metabolic Complications in Chronic Kidney Disease. Seminars in Nephrology, 2013, 33, 130-142.	1.6	22
120	Activation of FGF-23 Mediated Vitamin D Degradative Pathways by Cholecalciferol. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1830-E1837.	3.6	22
121	Multiple faces of fibroblast growth factor-23. Current Opinion in Nephrology and Hypertension, 2016, 25, 333-342.	2.0	22
122	Economic Analysis of Cinacalcet in Combination With Low-Dose Vitamin D Versus Flexible-Dose Vitamin D in Treating Secondary Hyperparathyroidism in Hemodialysis Patients. American Journal of Kidney Diseases, 2010, 56, 1108-1116.	1.9	21
123	Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors. Journal of Cellular Biochemistry, 2005, 95, 1081-1092.	2.6	20
124	Predictors of Short-Term Changes in Serum Intact Parathyroid Hormone Levels in Hemodialysis Patients: Role of Phosphorus, Calcium, and Gender1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3860-3866.	3.6	19
125	Hyperphosphatemia in end-stage renal disease. Advances in Chronic Kidney Disease, 2002, 9, 184-192.	2.1	19
126	Calcyclin Mediates Serum Response Element (SRE) Activation by an Osteoblastic Extracellular Cation-Sensing Mechanism. Journal of Bone and Mineral Research, 2003, 18, 1825-1833.	2.8	19

#	Article	IF	CITATIONS
127	Unmasking the Osteoinductive Effects of a G-Protein-Coupled Receptor (GPCR) Kinase (GRK) Inhibitor by Treatment With PTH(1-34). Journal of Bone and Mineral Research, 2004, 19, 1661-1670.	2.8	19
128	Elevated FGF23 Levels Are Associated with Impaired Calcium-Mediated Suppression of PTH in ESRD. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E57-E64.	3.6	19
129	Computationally identified novel agonists for GPRC6A. PLoS ONE, 2018, 13, e0195980.	2.5	19
130	Developmental regulation of osteocalcin expression in MC3T3-E1 osteoblasts: Minimal role of the proximal E-box cis-acting promoter elements. Journal of Cellular Biochemistry, 1997, 65, 11-24.	2.6	18
131	Inducible expression of <i>Runx2</i> results in multiorgan abnormalities in mice. Journal of Cellular Biochemistry, 2011, 112, 653-665.	2.6	18
132	Continuous arteriovenous hemodialysis: Effect of dialyzer geometry. Kidney International, 1992, 42, 448-451.	5.2	17
133	Parathyroid-specific interaction of the calcium-sensing receptor and Cαq. Kidney International, 2008, 74, 1548-1556.	5.2	17
134	Cinacalcet HCI: A novel treatment for secondary hyperparathyroidism in stage 5 chronic kidney disease. Kidney International, 2005, 68, S24-S28.	5.2	16
135	Validation of a Novel Modified Aptamer-Based Array Proteomic Platform in Patients with End-Stage Renal Disease. Diagnostics, 2018, 8, 71.	2.6	15
136	Role of GPRC6A in Regulating Hepatic Energy Metabolism in Mice. Scientific Reports, 2020, 10, 7216.	3.3	15
137	RUNX2 mutations in Chinese patients with cleidocranial dysplasia. Mutagenesis, 2009, 24, 425-431.	2.6	13
138	Equivalency of various methods for estimating osteoid seam width. Journal of Bone and Mineral Research, 1989, 4, 671-677.	2.8	12
139	Molecular Control of Phosphorus Homeostasis and Precision Treatment of Hypophosphatemic Disorders. Current Molecular Biology Reports, 2019, 5, 75-85.	1.6	11
140	Humanized GPRC6AKGKY is a gain-of-function polymorphism in mice. Scientific Reports, 2020, 10, 11143.	3.3	11
141	Explaining Divergent Observations Regarding Osteocalcin/GPRC6A Endocrine Signaling. Endocrinology, 2021, 162, .	2.8	11
142	Reducing cardiovascular mortality in chronic kidney disease: something borrowed, something new. Journal of Clinical Investigation, 2013, 123, 542-3.	8.2	11
143	Mutations in the COL1A2 gene of type I collagen that result in nonlethal forms of osteogenesis imperfecta. American Journal of Medical Genetics Part A, 1993, 45, 228-232.	2.4	10
144	Changes With Lanthanum Carbonate, Calcium Acetate, and Phosphorus Restriction in CKD: AÂRandomized Controlled Trial. Kidney International Reports, 2018, 3, 897-904.	0.8	10

#	Article	IF	CITATIONS
145	Oral versus intravenous calcitriol. Current Opinion in Nephrology and Hypertension, 1995, 4, 307-312.	2.0	9
146	Calcitriol administration in end-stage renal disease: intravenous or oral?. Pediatric Nephrology, 1996, 10, 331-336.	1.7	9
147	RNA interference and its application in bone-related diseases. Biochemical and Biophysical Research Communications, 2007, 361, 817-821.	2.1	9
148	Pathophysiology of X-Linked Hypophosphatemia, Tumor-Induced Osteomalacia, and Autosomal Dominant Hypophosphatemia: A PerPHEXing Problem. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 494-496.	3.6	9
149	Novel Treatments from Inhibition of the Intestinal Sodium–Hydrogen Exchanger 3. International Journal of Nephrology and Renovascular Disease, 2021, Volume 14, 411-420.	1.8	9
150	Fibroblast growth factor 23: uremic toxin or innocent bystander in chronic kidney disease?. Nephrology News & Issues, 2009, 23, 33-4, 36-7.	0.1	9
151	ASARM mineralization hypothesis: A bridge too far?. Journal of Bone and Mineral Research, 2010, 25, 692-694.	2.8	7
152	Chronic Kidney Disease and Diabetes Mellitus Predict Resistance to Vitamin D Replacement Therapy. American Journal of the Medical Sciences, 2013, 345, 314-320.	1.1	7
153	Treatment of secondary hyperparathyroidism in kidney disease: what we know and do not know about use of calcimimetics and vitamin D analogs. International Journal of Nephrology and Renovascular Disease, 2008, 1, 5.	1.8	6
154	Guidelines for disorders of mineral metabolism and secondary hyperparathyroidism should not yet be modified. Nature Clinical Practice Nephrology, 2006, 2, 337-339.	2.0	5
155	Cloning and Characterization of the Proximal Murine Phex Promoter. Endocrinology, 2001, 142, 3987-3995.	2.8	5
156	Osseous Complications of Renal Transplantation. Seminars in Dialysis, 1996, 9, 353-359.	1.3	4
157	Aluminum-associated bone disease: What's in a name?. Journal of Bone and Mineral Research, 1986, 1, 389-390.	2.8	4
158	Design and development of FGF-23 antagonists: Definition of the pharmacophore and initial structure-activity relationships probed by synthetic analogues. Bioorganic and Medicinal Chemistry, 2021, 29, 115877.	3.0	3
159	Hollowâ€Fiber versus Parallelâ€Plate Dialyzers in Continuous Arteriovenous Hemodialysis. Seminars in Dialysis, 1993, 6, 229-231.	1.3	2
160	FGF23/Klotho New Regulators of Vitamin D Metabolism. , 2011, , 747-761.		1
161	Bone Disorders in Chronic Kidney Disease. , 2014, , 476-487.		1
162	Bone Disorders in Chronic Kidney Disease. , 2009, , 487-498.		1

#	Article	IF	CITATIONS
163	Introduction: Emerging therapies derived from the molecular pathogenesis of secondary hyperparathyroidism in ESRD patients. Advances in Chronic Kidney Disease, 2002, 9, 153-158.	2.1	1
164	Clinical Applications of Parathyroid Hormone Immunoassays in Patients with End Stage Renal Disease. Seminars in Dialysis, 1993, 6, 305-311.	1.3	0
165	Management of Calcium and Bone Disease in Renal Patients. , 2013, , 3073-3086.		0
166	Letter to the Editor: "Increased Circulating FGF23 Does Not Lead to Cardiac Hypertrophy in the Male Hyp Mouse Model of XLH― Endocrinology, 2018, 159, 3655-3656.	2.8	0
167	FGF-23 Counter-Regulatory Hormone for Vitamin D Actions on Mineral Metabolism, Hemodynamics, and Innate Immunity. , 2018, , 871-884.		0
168	Management of Calcium and Bone Disease in Renal Patients. , 2008, , 2671-2679.		0
169	Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. Development (Cambridge), 2012, 139, e1308-e1308.	2.5	0
170	Role of GPRC6A in Regulating Hepatic Energy Metabolism. SSRN Electronic Journal, 0, , .	0.4	0
171	Calcitriol administration in end-stage renal disease: intravenous or oral?. Pediatric Nephrology, 1996, 10, 331-336.	1.7	0