
Kay-Uwe Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Communications Biology, 2022, 5, 132.	2.0	4
2	Know thy cells: commonly used triple-negative human breast cancer cell lines carry mutations in RAS and effectors. Breast Cancer Research, 2022, 24, .	2.2	8
3	Tsg101 Is Necessary for the Establishment and Maintenance of Mouse Retinal Pigment Epithelial Cell Polarity. Molecules and Cells, 2021, 44, 168-178.	1.0	5
4	Highly metastatic claudin-low mammary cancers can originate from luminal epithelial cells. Nature Communications, 2021, 12, 3742.	5.8	24
5	Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers, 2021, 13, 2777.	1.7	18
6	PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Molecular Cancer Therapeutics, 2021, 20, 1836-1845.	1.9	14
7	Tumor susceptibility gene 101 is required for the maintenance of uterine epithelial cells during embryo implantation. Reproductive Biology and Endocrinology, 2021, 19, 112.	1.4	3
8	Models of pancreatic ductal adenocarcinoma. Cancer and Metastasis Reviews, 2021, 40, 803-818.	2.7	9
9	Targeting Gi/o protein–coupled receptor signaling blocks HER2-induced breast cancer development and enhances HER2-targeted therapy. JCI Insight, 2021, 6, .	2.3	13
10	NSG-Pro mouse model for uncovering resistance mechanisms and unique vulnerabilities in human luminal breast cancers. Science Advances, 2021, 7, eabc8145.	4.7	10
11	Dual recombinase action in the normal and neoplastic mammary gland epithelium. Scientific Reports, 2021, 11, 20775.	1.6	2
12	The transcription factor Sox10 is an essential determinant of branching morphogenesis and involution in the mouse mammary gland. Scientific Reports, 2020, 10, 17807.	1.6	21
13	Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clinical Cancer Research, 2020, 26, 4670-4681.	3.2	31
14	Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear. Hearing Research, 2020, 390, 107951.	0.9	6
15	The Multifaceted Roles of the Tumor Susceptibility Gene 101 (TSG101) in Normal Development and Disease. Cancers, 2020, 12, 450.	1.7	23
16	Efficient tissue-type specific expression of target genes in a tetracycline-controlled manner from the ubiquitously active Eef1a1 locus. Scientific Reports, 2020, 10, 207.	1.6	5
17	Tsg101 positively regulates physiologicâ€like cardiac hypertrophy through FIP3â€mediated endosomal recycling of IGFâ€1R. FASEB Journal, 2019, 33, 7451-7466.	0.2	12
18	Loss of Jak2 protects cardiac allografts from chronic rejection by attenuating Th1 response along with increased regulatory T cells. American Journal of Translational Research (discontinued), 2019, 11, 624-640.	0.0	1

#	Article	IF	CITATIONS
19	Regulation and New Treatment Strategies in Breast Cancer. Journal of Life Sciences (Westlake Village,) Tj ETQq1	1 0.7843 1.8	14 rgBT /Ove
20	<scp>AKT</scp> 3 drives adenoid cystic carcinoma development in salivary glands. Cancer Medicine, 2018, 7, 445-453.	1.3	13
21	Janus Kinase 1 Plays a Critical Role in Mammary Cancer Progression. Cell Reports, 2018, 25, 2192-2207.e5.	2.9	34
22	Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis. Gut, 2017, 66, 145-155.	6.1	58
23	Janus Kinase 2 (JAK2) Dissociates Hepatosteatosis from Hepatocellular Carcinoma in Mice. Journal of Biological Chemistry, 2017, 292, 3789-3799.	1.6	19
24	Autocrine IGF1 Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of Oncogenic Drivers. Cell Reports, 2017, 18, 2243-2255.	2.9	48
25	Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood, 2017, 129, 1823-1830.	0.6	157
26	Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Molecular and Cellular Endocrinology, 2017, 451, 31-39.	1.6	65
27	Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation. Scientific Reports, 2017, 7, 7653.	1.6	41
28	Hepatic JAK2 protects against atherosclerosis through circulating IGF-1. JCI Insight, 2017, 2, .	2.3	14
29	Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8228-E8237.	3.3	9
30	Hepatic Deletion of Janus Kinase 2 Counteracts Oxidative Stress in Mice. Scientific Reports, 2016, 6, 34719.	1.6	24
31	Janus Kinase 1 Is Essential for Inflammatory Cytokine Signaling and Mammary Gland Remodeling. Molecular and Cellular Biology, 2016, 36, 1673-1690.	1.1	24
32	Generation of Janus kinase 1 (JAK1) conditional knockout mice. Genesis, 2016, 54, 582-588.	0.8	12
33	Oligodendroglial deletion of ESCRTâ€i component TSG101 causes spongiform encephalopathy. Biology of the Cell, 2016, 108, 324-337.	0.7	14
34	Cyr61 as mediator of Src signaling in triple negative breast cancer cells. Oncotarget, 2015, 6, 13520-13538.	0.8	24
35	Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nature Communications, 2015, 6, 6744.	5.8	879
36	Genetically engineered mucin mouse models for inflammation and cancer. Cancer and Metastasis Reviews, 2015, 34, 593-609.	2.7	23

#	Article	IF	CITATIONS
37	Myocardial Hypertrophic Remodeling and Impaired Left Ventricular Function in Mice with a Cardiac-Specific Deletion of Janus Kinase 2. American Journal of Pathology, 2015, 185, 3202-3210.	1.9	10
38	Mouse Models of Breast Cancer. Methods in Molecular Biology, 2015, 1267, 47-71.	0.4	26
39	Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 2015, 6, 5772-5787.	0.8	66
40	Acceleration of Bcr-Abl+ leukemia induced by deletion of JAK2. Leukemia, 2014, 28, 1918-1922.	3.3	12
41	Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells. Stem Cells, 2014, 32, 1878-1889.	1.4	68
42	Cancer Cell Dormancy in Novel Mouse Models for Reversible Pancreatic Cancer: A Lingering Challenge in the Development of Targeted Therapies. Cancer Research, 2014, 74, 2138-2143.	0.4	49
43	Novel transcripts from a distinct promoter that encode the full-length AKT1 in human breast cancer cells. BMC Cancer, 2014, 14, 195.	1.1	4
44	Stat5 Regulates the Phosphatidylinositol 3-Kinase/Akt1 Pathway during Mammary Gland Development and Tumorigenesis. Molecular and Cellular Biology, 2014, 34, 1363-1377.	1.1	56
45	D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells. Molecular and Cellular Endocrinology, 2014, 382, 583-592.	1.6	42
46	Selective deletion of Jak2 in adult mouse hematopoietic cells leads to lethal anemia and thrombocytopenia. Haematologica, 2014, 99, e52-e54.	1.7	54
47	Generation of Conditional Knockout Mice. Methods in Molecular Biology, 2014, 1194, 21-35.	0.4	10
48	Loss of Jak2 Impairs Endothelial Function by Attenuating Raf-1/MEK1/Sp-1 Signaling Along with Altered eNOS Activities. American Journal of Pathology, 2013, 183, 617-625.	1.9	39
49	The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nature Immunology, 2013, 14, 364-371.	7.0	163
50	Multipotent PI-MECs are the true targets of MMTV-neu tumorigenesis. Oncogene, 2013, 32, 1338-1338.	2.6	13
51	Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH. Molecular Endocrinology, 2013, 27, 1333-1342.	3.7	55
52	G-protein-coupled Receptor Agonist BV8/Prokineticin-2 and STAT3 Protein Form a Feed-forward Loop in Both Normal and Malignant Myeloid Cells. Journal of Biological Chemistry, 2013, 288, 13842-13849.	1.6	49
53	Dormant Cancer Cells Contribute to Residual Disease in a Model of Reversible Pancreatic Cancer. Cancer Research, 2013, 73, 1821-1830.	0.4	66
54	Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. Blood, 2013, 121, 1188-1199.	0.6	40

#	Article	IF	CITATIONS
55	Conditional Deletion of Jak2 Reveals an Essential Role in Hematopoiesis throughout Mouse Ontogeny: Implications for Jak2 Inhibition in Humans. PLoS ONE, 2013, 8, e59675.	1.1	53
56	Gain-of-Function of Stat5 Leads to Excessive Granulopoiesis and Lethal Extravasation of Granulocytes to the Lung. PLoS ONE, 2013, 8, e60902.	1.1	3
57	Hepatocyte-specific Deletion of Janus Kinase 2 (JAK2) Protects against Diet-induced Steatohepatitis and Glucose Intolerance. Journal of Biological Chemistry, 2012, 287, 10277-10288.	1.6	58
58	BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nature Chemical Biology, 2012, 8, 285-293.	3.9	158
59	Activation of Janus Kinases During Tumorigenesis. , 2012, , 259-288.		2
60	Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology and Oncology, 2012, 5, 68.	6.9	65
61	A Knockout of the Tsg101 Gene Leads to Decreased Expression of ErbB Receptor Tyrosine Kinases and Induction of Autophagy Prior to Cell Death. PLoS ONE, 2012, 7, e34308.	1.1	20
62	Generation of a Novel MMTV-tTA Transgenic Mouse Strain for the Targeted Expression of Genes in the Embryonic and Postnatal Mammary Gland. PLoS ONE, 2012, 7, e43778.	1.1	21
63	Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cellular Signalling, 2012, 24, 1276-1286.	1.7	63
64	Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. Journal of Clinical Investigation, 2012, 122, 163-177.	3.9	61
65	Vascular smooth muscle Jak2 deletion prevents angiotensin II-mediated neointima formation following injury in mice. Journal of Molecular and Cellular Cardiology, 2011, 50, 1026-1034.	0.9	25
66	Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology, 2011, 54, 1398-1409.	3.6	100
67	Forced involution of the functionally differentiated mammary gland by overexpression of the proâ€apoptotic protein bax. Genesis, 2011, 49, 24-35.	0.8	16
68	ESCRT proteins. Bioarchitecture, 2011, 1, 45-48.	1.5	12
69	Liver-Derived IGF-I Contributes to GH-Dependent Increases in Lean Mass and Bone Mineral Density in Mice with Comparable Levels of Circulating GH. Molecular Endocrinology, 2011, 25, 1223-1230.	3.7	27
70	Cyclin D3 Compensates for the Loss of Cyclin D1 during ErbB2-Induced Mammary Tumor Initiation and Progression. Cancer Research, 2011, 71, 7513-7524.	0.4	33
71	Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species. Cardiovascular Research, 2011, 91, 171-179.	1.8	41
72	Jak2 Is Necessary for Neuroendocrine Control of Female Reproduction. Journal of Neuroscience, 2011, 31, 184-192.	1.7	41

#	Article	IF	CITATIONS
73	Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. Journal of Clinical Investigation, 2011, 121, 1412-1423.	3.9	122
74	IRF4 Is a Suppressor of c-Myc Induced B Cell Leukemia. PLoS ONE, 2011, 6, e22628.	1.1	40
75	Putting the brakes on mammary tumorigenesis: Loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget, 2011, 2, 1043-1054.	0.8	40
76	The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. Journal of Carcinogenesis, 2011, 10, 32.	2.5	46
77	Temporally and spatially controlled expression of transgenes in embryonic and adult tissues. Transgenic Research, 2010, 19, 499-509.	1.3	19
78	Janus kinase 2 is required for the initiation but not maintenance of prolactin-induced mammary cancer. Oncogene, 2010, 29, 5359-5369.	2.6	46
79	Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death and Differentiation, 2010, 17, 1600-1612.	5.0	142
80	Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7–induced signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19455-19460.	3.3	171
81	Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in <i>Akt1</i> . Molecular and Cellular Biology, 2010, 30, 2957-2970.	1.1	90
82	Erythropoietin protects against diabetes through direct effects on pancreatic β cells. Journal of Experimental Medicine, 2010, 207, 2831-2842.	4.2	119
83	Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16107-16112.	3.3	58
84	Targeting Janus Kinase 2 in Her2/neu-Expressing Mammary Cancer: Implications for Cancer Prevention and Therapy. Cancer Research, 2009, 69, 6642-6650.	0.4	35
85	Longitudinal analysis of mammogenesis using a novel tetracyclineâ€inducible mouse model and in vivo imaging. Genesis, 2009, 47, 234-245.	0.8	17
86	Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 93-103.	1.0	145
87	A Mammary-Specific, Long-range Deletion on Mouse Chromosome 11 Accelerates Brca1-Associated Mammary Tumorigenesis. Neoplasia, 2008, 10, 1325-IN3.	2.3	11
88	Transforming Growth Factor‑β Regulates Mammary Carcinoma Cell Survival and Interaction with the Adjacent Microenvironment. Cancer Research, 2008, 68, 1809-1819.	0.4	123
89	The Janus Kinase 2 Is Required for Expression and Nuclear Accumulation of Cyclin D1 in Proliferating Mammary Epithelial Cells. Molecular Endocrinology, 2007, 21, 1877-1892.	3.7	69
90	Coactivation of Janus Tyrosine Kinase (Jak)1 Positively Modulates Prolactin-Jak2 Signaling in Breast Cancer: Recruitment of ERK and Signal Transducer and Activator of Transcription (Stat)3 and Enhancement of Akt and Stat5a/b Pathways. Molecular Endocrinology, 2007, 21, 2218-2232.	3.7	58

#	Article	IF	CITATIONS
91	Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14718-14723.	3.3	226
92	Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Developmental Biology, 2007, 303, 29-44.	0.9	103
93	Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene, 2007, 26, 5950-5959.	2.6	49
94	Deletion of Tip30 leads to rapid immortalization of murine mammary epithelial cells and ductal hyperplasia in the mammary gland. Oncogene, 2007, 26, 7423-7431.	2.6	25
95	Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. Journal of Endocrinology, 2006, 188, 589-601.	1.2	55
96	Epithelial-Specific and Stage-Specific Functions of Insulin-Like Growth Factor-I during Postnatal Mammary Development. Endocrinology, 2006, 147, 5412-5423.	1.4	45
97	Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene, 2005, 24, 552-560.	2.6	191
98	Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene, 2005, 24, 4820-4828.	2.6	25
99	Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis, 2005, 43, 1-11.	0.8	45
100	Pregnancy and Stem Cell Behavior. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 25-36.	1.0	51
101	Models of breast cancer. Drug Discovery Today: Disease Models, 2005, 2, 1-6.	1.2	10
102	Essential functions of the Janus kinase 2 (Jak2) during mammary gland development and tumorigenesis. Breast Cancer Research, 2005, 7, 1.	2.2	0
103	Cell Cycle Arrest and Cell Death Are Controlled by p53-dependent and p53-independent Mechanisms in Tsg101-deficient Cells. Journal of Biological Chemistry, 2004, 279, 35984-35994.	1.6	49
104	Impaired Alveologenesis and Maintenance of Secretory Mammary Epithelial Cells in Jak2 Conditional Knockout Mice. Molecular and Cellular Biology, 2004, 24, 5510-5520.	1.1	291
105	Brca1-Deficient Murine Mammary Epithelial Cells have Increased Sensitivity to CDDP and MMS. Cell Cycle, 2004, 3, 1451-1456.	1.3	41
106	Brca2 Deficiency Does Not Impair Mammary Epithelium Development but Promotes Mammary Adenocarcinoma Formation in p53+/â~' Mutant Mice. Cancer Research, 2004, 64, 1959-1965.	0.4	42
107	Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene, 2004, 23, 6980-6985.	2.6	116
108	Generation of a conditional knockout allele for theJanus kinase 2 (Jak2) gene in mice. Genesis, 2004, 40, 52-57.	0.8	244

#	Article	IF	CITATIONS
109	Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1725-1730.	3.3	150
110	Activation of Î ² -catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene, 2003, 22, 3875-3887.	2.6	127
111	Models of breast cancer: quo vadis, animal modeling?. Breast Cancer Research, 2003, 6, 31-8.	2.2	56
112	Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development (Cambridge), 2003, 130, 5257-5268.	1.2	144
113	Tsg101 Is Essential for Cell Growth, Proliferation, and Cell Survival of Embryonic and Adult Tissues. Molecular and Cellular Biology, 2003, 23, 150-162.	1.1	112
114	HIF1α is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development (Cambridge), 2003, 130, 1713-1724.	1.2	71
115	Loss of the Peroxisome Proliferation-activated Receptor gamma (PPARÎ ³) Does Not Affect Mammary Development and Propensity for Tumor Formation but Leads to Reduced Fertility. Journal of Biological Chemistry, 2002, 277, 17830-17835.	1.6	154
116	Bcl-x Is Not Required for Maintenance of Follicles and Corpus Luteum in the Postnatal Mouse Ovary1. Biology of Reproduction, 2002, 66, 438-444.	1.2	25
117	Targeted Deletion of the Tsg101 Gene Results in Cell Cycle Arrest at G1/S and p53-independent Cell Death. Journal of Biological Chemistry, 2002, 277, 43216-43223.	1.6	72
118	Basal Activation of Transcription Factor Signal Transducer and Activator of Transcription (Stat5) in Nonpregnant Mouse and Human Breast Epithelium. Molecular Endocrinology, 2002, 16, 1108-1124.	3.7	72
119	Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development (Cambridge), 2002, 129, 4159-4170.	1.2	227
120	An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development (Cambridge), 2002, 129, 1377-1386.	1.2	232
121	An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development (Cambridge), 2002, 129, 1377-86.	1.2	141
122	Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development (Cambridge), 2002, 129, 4159-70.	1.2	117
123	Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mechanisms of Development, 2001, 109, 281-293.	1.7	77
124	Role of serine phosphorylation of Stat5a in prolactin-stimulated β-casein gene expression. Molecular and Cellular Endocrinology, 2001, 183, 151-163.	1.6	80
125	Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Research, 2001, 10, 545-553.	1.3	264
126	Functional mammary gland development and oncogene-induced tumor formation are not affected by the absence of the retinoblastoma gene. Oncogene, 2001, 20, 7115-7119.	2.6	31

#	Article	IF	CITATIONS
127	Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. Journal of Cell Biology, 2001, 155, 531-542.	2.3	249
128	Bcl-x and Bax Regulate Mouse Primordial Germ Cell Survival and Apoptosis during Embryogenesis. Molecular Endocrinology, 2000, 14, 1038-1052.	3.7	215
129	Adenoviral and Transgenic Approaches for the Conditional Deletion of Genes from Mammary Tissue. , 2000, , 271-287.		1
130	Transfection of Primary Mammary Epithelial Cells by Viral and Nonviral Methods. , 2000, , 233-244.		3
131	Assignment <footref rid="foot01">¹</footref> of the murine tumor susceptibility gene 101 (<i>tsg101</i>) and a processed <i>tsg101</i> pseudogene (<i>tsg101-ps1</i>) to mouse chromosome 7 band B5 and chromosome 15 band D1 by in situ hybridization. Cytogenetic and Genome Research, 1999, 84, 87-88.	0.6	7
132	Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 1999, 22, 37-43.	9.4	711
133	Genomic architecture and transcriptional activation of the mouse and human tumor susceptibility gene TSG101: Common types of shorter transcripts are true alternative splice variants. Oncogene, 1998, 17, 2761-2770.	2.6	34
134	Targeted Reduction of Oxytocin Expression Provides Insights into its Physiological Roles. Advances in Experimental Medicine and Biology, 1998, 449, 231-240.	0.8	49
135	Prolactin Signaling in Mammary Gland Development. Journal of Biological Chemistry, 1997, 272, 7567-7569.	1.6	154
136	Cre-mediated gene deletion in the mammary gland. Nucleic Acids Research, 1997, 25, 4323-4330.	6.5	467
137	Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3425-3430.	3.3	334
138	Developing a mammary gland is a stat affair. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 365-372.	1.0	62
139	Oxytocin and milk removal are required for postâ€partum mammaryâ€gland development. Genes and Function, 1997, 1, 233-244.	2.8	72
140	Deficiency in Mouse Oxytocin Prevents Milk Ejection,but not Fertility or Parturition. Journal of Neuroendocrinology, 1996, 8, 847-853.	1.2	272