John H Loughrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4827421/publications.pdf

Version: 2024-02-01

82 4,689 papers citations

30 h-index 95266 68 g-index

82 all docs 82 docs citations 82 times ranked 3416 citing authors

#	Article	IF	CITATIONS
1	Improving Anaerobic Digestion of Brewery and Distillery Spent Grains through Aeration across a Silicone Membrane. Sustainability, 2022, 14, 2755.	3.2	3
2	Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Antibiotics, 2022, 11 , 391 .	3.7	19
3	Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 135-147.	1.5	25
4	Evaluation of Microaeration and Sound to Increase Biogas Production from Poultry Litter. Environments - MDPI, 2020, 7, 62.	3.3	6
5	Anaerobic Digestion of Tetracycline Spiked Livestock Manure and Poultry Litter Increased the Abundances of Antibiotic and Heavy Metal Resistance Genes. Frontiers in Microbiology, 2020, 11, 614424.	3.5	16
6	In Situ Sonification of Anaerobic Digestion: Extended Evaluation of Performance in a Temperate Climate. Energies, 2020, 13, 5349.	3.1	1
7	In Situ Acoustic Treatment of Anaerobic Digesters to Improve Biogas Yields. Environments - MDPI, 2020, 7, 11.	3.3	6
8	Aeration to Improve Biogas Production by Recalcitrant Feedstock. Environments - MDPI, 2019, 6, 44.	3.3	10
9	Sound enhances wastewater degradation and improves anaerobic digester performance. SN Applied Sciences, $2019, 1, 1$.	2.9	4
10	Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. Journal of Environmental Quality, 2019, 48, 171-178.	2.0	28
11	Improved water quality and reduction of odorous compounds in anaerobic lagoon columns receiving pre-treated pig wastewater. Environmental Technology (United Kingdom), 2018, 39, 2613-2621.	2.2	3
12	High-Rate Solid-Liquid Separation Coupled With Nitrogen and Phosphorus Treatment of Swine Manure: Effect on Water Quality. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	15
13	High-Rate Solid-Liquid Separation Coupled With Nitrogen and Phosphorous Treatment of Swine Manure: Effect on Ammonia Emission. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	1
14	<i>Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production</i> ., 2018,,.		1
15	A Gas Chromatographic Method for the Determination of Bicarbonate and Dissolved Gases. Frontiers in Environmental Science, 2017, 5, .	3.3	7
16	The effect of aged litter materials on polyatomic ion concentrations in fractionated suspended particulate matter from a broiler house. Journal of the Air and Waste Management Association, 2016, 66, 707-714.	1.9	3
17	Effect of turning frequency and season on composting materials from swine high-rise facilities. Waste Management, 2015, 39, 86-95.	7.4	28
18	Improvement of Anaerobic Digester Performance by Wastewater Recirculation through an Aerated Membrane. Transactions of the ASABE, 2013, , 1675-1681.	1.1	3

#	Article	IF	Citations
19	Estimating Greenhouse Gas Emissions from a Waste Lagoon. Applied Engineering in Agriculture, 2013, , .	0.7	O
20	Seasonal Variation in Heat Fluxes, Predicted Emissions of Malodorants, and Wastewater Quality of an Anaerobic Swine Waste Lagoon. Water, Air, and Soil Pollution, 2012, 223, 3611-3618.	2.4	6
21	Recirculating Swine Waste through a Silicone Membrane in an Aerobic Chamber Improves Biogas Quality and Wastewater Malodors. Transactions of the ASABE, 2012, 55, 1929-1937.	1.1	4
22	Heat Flux Measurements and Modeling of Malodorous Compounds above an Anaerobic Swine Lagoon. Water, Air, and Soil Pollution, 2011, 217, 463-471.	2.4	7
23	Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon. Anaerobe, 2010, 16, 74-82.	2.1	42
24	Reduction of Malodors from Swine Lagoons through Influent Pre-treatment. , 2010, , .		0
25	A Simple Device for the Collection of Water and Dissolved Gases at Defined Depths. Applied Engineering in Agriculture, 2010, 26, 559-564.	0.7	2
26	Evaluation of Secondâ€Generation Multistage Wastewater Treatment System for the Removal of Malodors from Liquid Swine Waste. Journal of Environmental Quality, 2009, 38, 1739-1748.	2.0	11
27	A System for Estimating Bowen Ratio and Evaporation from Waste Lagoons. Applied Engineering in Agriculture, 2009, 25, 923-932.	0.7	3
28	Simulation of boundary layer trajectory dispersion sensitivity to soil moisture conditions: MM5 and Noah-based investigation. Atmospheric Environment, 2009, 43, 3774-3785.	4.1	16
29	Fe(III) stimulates 3-methylindole and 4-methylphenol production in swine lagoon enrichments and <i>Clostridium scatologenes </i> ATCC 25775. Letters in Applied Microbiology, 2009, 48, 118-124.	2.2	6
30	The effect of stratification and seasonal variability on the profile of an anaerobic swine waste treatment lagoon. Bioresource Technology, 2009, 100, 3706-3712.	9.6	32
31	Development of a second-generation environmentally superior technology for treatment of swine manure in the USA. Bioresource Technology, 2009, 100, 5406-5416.	9.6	85
32	A Coupled MM5-NOAH Land Surface Model-based Assessment of Sensitivity of Planetary Boundary Layer Variables to Anomalous Soil Moisture Conditions. Physical Geography, 2008, 29, 54-78.	1.4	21
33	Equilibrium Sampling Used to Monitor Malodors in a Swine Waste Lagoon. Journal of Environmental Quality, 2008, 37, 1-6.	2.0	27
34	Sampling of Malodorous Compounds in Air Using Stir Bar Sorbtive Extraction. Transactions of the ASABE, 2008, 51, 1747-1752.	1.1	1
35	In Situ Measurements of Malodors of a Swine Waste Lagoon. , 2007, , .		0
36	Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiology Ecology, 2007, 60, 329-340.	2.7	25

#	Article	IF	CITATIONS
37	Comparison of Solid-Phase Microextraction and Stir Bar Sorptive Extraction for the Quantification of Malodors in Wastewater. Journal of Agricultural and Food Chemistry, 2006, 54, 3237-3241.	5.2	38
38	Reduction of Malodorous Compounds from Liquid Swine Manure by a Multi-Stage Treatment System. Applied Engineering in Agriculture, 2006, 22, 867-873.	0.7	17
39	Reduction of Malodorous Compounds from a Treated Swine Anaerobic Lagoon. Journal of Environmental Quality, 2006, 35, 194-199.	2.0	30
40	AN EQUILIBRIUM SAMPLER FOR MALODORS IN WASTEWATER. Transactions of the ASABE, 2006, 49, 1167-1172.	1.1	3
41	Free Fatty Acids and Sterols in Swine Manure. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 31-42.	1.5	9
42	Butterbean Seed Yield, Color, and Protein Content Are Affected by Photomorphogenesis. Crop Science, 2004, 44, 2123-2126.	1.8	8
43	Morphogenic Light Reflected to Developing Cotton Leaves Affects Insectâ€Attracting Terpene Concentrations. Crop Science, 2004, 44, 198-203.	1.8	5
44	Aroma Content of Fresh Basil (Ocimum basilicumL.) Leaves Is Affected by Light Reflected from Colored Mulches. Journal of Agricultural and Food Chemistry, 2003, 51, 2272-2276.	5.2	39
45	Aroma of Fresh Strawberries Is Enhanced by Ripening over Red versus Black Mulch. Journal of Agricultural and Food Chemistry, 2002, 50, 161-165.	5.2	38
46	Light Reflected from Colored Mulches Affects Aroma and Phenol Content of Sweet Basil (Ocimum) Tj ETQq0 0	0 rgBT /Ove	erlock 10 Tf 50
47	Light Reflected from Red Mulch to Ripening Strawberries Affects Aroma, Sugar and Organic Acid Concentrations¶. Photochemistry and Photobiology, 2001, 74, 103.	2.5	36
48	Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nature Biotechnology, 2001, 19, 371-374.	17.5	194
49	Light Reflected from Red Mulch to Ripening Strawberries Affects Aroma, Sugar and Organic Acid		
	Concentrations¶. Photochemistry and Photobiology, 2001, 74, 103-107.	2.5	6
50	Concentrations Aq. Photochemistry and Photobiology, 2001, 74, 103-107. Title is missing!. Journal of Chemical Ecology, 2000, 26, 189-202.	1.8	139
50			
	Title is missing!. Journal of Chemical Ecology, 2000, 26, 189-202. Attraction of Japanese Beetles (Coleoptera: Scarabaeidae) to Host Plant Volatiles in Field Trapping	1.8	139
51	Title is missing!. Journal of Chemical Ecology, 2000, 26, 189-202. Attraction of Japanese Beetles (Coleoptera: Scarabaeidae) to Host Plant Volatiles in Field Trapping Experiments. Environmental Entomology, 1998, 27, 395-400. Response of Japanese Beetles (Coleoptera: Scarabaeidae) to Leaf Volatiles of Susceptible and Resistant	1.8	139 30

#	Article	IF	CITATIONS
55	Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. Phytochemistry, 1997, 45, 919-923.	2.9	44
56	Metabolism of Natural Volatile Compounds by Strawberry Fruit. Journal of Agricultural and Food Chemistry, 1996, 44, 2802-2805.	5.2	47
57	Volatile compounds from crabapple (Malus spp.) cultivars differing in susceptibility to the Japanese beetle (Popillia japonica Newman). Journal of Chemical Ecology, 1996, 22, 1295-1305.	1.8	33
58	Why do Japanese beetles defoliate trees from the top down?. Entomologia Experimentalis Et Applicata, 1996, 80, 209-212.	1.4	8
59	Role of Feeding–Induced Plant Volatiles in Aggregative Behavior of the Japanese Beetle (Coleoptera:) Tj ETQq1 1	0.78431 1.4	4 rgBT /Ove 192
60	Why do Japanese beetles defoliate trees from the top down?., 1996,, 209-212.		0
61	How caterpillar-damaged plants protect themselves by attracting parasitic wasps Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4169-4174.	7.1	645
62	The chemistry of eavesdropping, alarm, and deceit Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 23-28.	7.1	150
63	Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. Journal of Chemical Ecology, 1995, 21, 1217-1227.	1.8	258
64	Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman). Journal of Chemical Ecology, 1995, 21, 1457-1467.	1.8	147
65	Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. Journal of Chemical Ecology, 1994, 20, 3039-3050.	1.8	146
66	Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11836-11840.	7.1	357
67	Effect of diurnal sampling on the headspace composition of detached Nicotiana suaveolens flowers. Phytochemistry, 1993, 32, 1417-1419.	2.9	20
68	Effects of some natural volatile compounds on the pathogenic fungiAlternaria alternata andBotrytis cinerea. Journal of Chemical Ecology, 1992, 18, 1083-1091.	1.8	128
69	Glycosidically bound volatile components of Nicotiana sylvestris and N. Suaveolens flowers. Phytochemistry, 1992, 31, 1537-1540.	2.9	52
70	Plant Volatiles Inhibit Pollen Germination of Apple and Other Species. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 267.	1.0	1
71	Inhibition of pollen germination by volatile compounds including 2-hexenal and 3-hexenal. Journal of Agricultural and Food Chemistry, 1991, 39, 952-956.	5.2	21
72	Circadian rhythm of volatile emission from flowers of Nicotiana sylvestris and N. suaveolens. Physiologia Plantarum, 1991, 83, 492-496.	5.2	74

#	Article	IF	CITATIONS
73	Circadian rhythm of volatile emission from flowers of Nicotiana sylvestris and N. suaveolens. Physiologia Plantarum, 1991, 83, 492-496.	5.2	16
74	Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus \tilde{A} — domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry, 1990, 29, 2473-2477.	2.9	106
75	Identification of some volatile compounds from strawberry flowers. Phytochemistry, 1990, 29, 2847-2848.	2.9	20
76	Headspace compounds from flowers of Nicotiana tabacum and related species. Journal of Agricultural and Food Chemistry, 1990, 38, 455-460.	5.2	92
77	Lipoxygenase 3 reduces hexanal production from soybean seed homogenates. Journal of Agricultural and Food Chemistry, 1990, 38, 1934-1936.	5.2	30
78	Strawberry resistance to Tetranychus urticae Koch: Effects of flower, fruit, and foliage removal?comparisons of air- vs. nitrogen-entrained volatile compounds. Journal of Chemical Ecology, 1989, 15, 1465-1473.	1.8	19
79	Strawberry foliage headspace vapor components at periods of susceptibility and resistance toTetranychus urticae Koch. Journal of Chemical Ecology, 1988, 14, 789-796.	1.8	38
80	Green leaf headspace volatiles from Nicotiana tabacum lines of different trichome morphology. Journal of Agricultural and Food Chemistry, 1988, 36, 295-299.	5.2	29
81	Effects of lipoxygenase inhibitors on the formation of volatile compounds in wheat. Phytochemistry, 1987, 26, 1273-1277.	2.9	6
82	A model-based exploratory study of sulfur dioxide dispersions from concentrated animal feeding operations in the Southeastern United States. Physical Geography, 0, , 1-31.	1.4	0