Alexander N Combes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482664/publications.pdf

Version: 2024-02-01

49 papers

3,172 citations

172457 29 h-index 206112 48 g-index

54 all docs

54 docs citations

54 times ranked 3347 citing authors

#	Article	IF	Citations
1	Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. American Journal of Pathology, 2022, 192, 738-749.	3.8	10
2	Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity. Cellular and Molecular Life Sciences, 2022, 79, 296.	5.4	4
3	Heterozygous deletion of <i>Sox9</i> in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Human Molecular Genetics, 2021, 29, 3781-3792.	2.9	5
4	PAX2+ Mesenchymal Origin of Gonadal Supporting Cells Is Conserved in Birds. Frontiers in Cell and Developmental Biology, 2021, 9, 735203.	3.7	3
5	Clearly imaging and quantifying the kidney in 3D. Kidney International, 2021, 100, 780-786.	5. 2	21
6	An InÂVitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports, 2020, 15, 1377-1391.	4.8	22
7	Kidney organoids: accurate models or fortunate accidents. Genes and Development, 2019, 33, 1319-1345.	5.9	97
8	Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Medicine, 2019, 11, 3.	8.2	158
9	Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development (Cambridge), 2019, 146, .	2.5	123
10	Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development (Cambridge), 2019, 146, .	2.5	97
11	Evaluation of variability in human kidney organoids. Nature Methods, 2019, 16, 79-87.	19.0	176
12	Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.	12.8	55
13	DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. Journal of the American Society of Nephrology: JASN, 2019, 30, 63-78.	6.1	52
14	Nephron progenitor commitment is a stochastic process influenced by cell migration. ELife, 2019, 8, .	6.0	47
15	Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. Journal of Mathematical Biology, 2018, 76, 1673-1697.	1.9	45
16	Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney International, 2018, 93, 589-598.	5.2	27
17	Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5998-6003.	7.1	39
18	Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration. ELife, $2018, 7, .$	6.0	25

#	Article	IF	CITATIONS
19	Wnt $11\ $ directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. ELife, 2018, 7, .	6.0	50
20	Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells Development (Cambridge), 2017, 144, 1087-1096.	2.5	22
21	Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. Journal of Pathology, 2016, 238, 665-676.	4.5	7
22	Analysed cap mesenchyme track data from live imaging of mouse kidney development. Data in Brief, 2016, 9, 149-154.	1.0	2
23	Understanding kidney morphogenesis to guide renal tissue regeneration. Nature Reviews Nephrology, 2016, 12, 624-635.	9.6	38
24	Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Developmental Biology, 2016, 418, 297-306.	2.0	71
25	Towards a quantitative model of kidney morphogenesis. Nephrology, 2015, 20, 312-314.	1.6	5
26	Cell–Cell Interactions Driving Kidney Morphogenesis. Current Topics in Developmental Biology, 2015, 112, 467-508.	2.2	58
27	ROBO2 restricts the nephrogenic field and regulates Wolffian duct–nephrogenic cord separation. Developmental Biology, 2015, 404, 88-102.	2.0	37
28	A spatially-averaged mathematical model of kidney branching morphogenesis. Journal of Theoretical Biology, 2015, 379, 24-37.	1.7	22
29	An integrated pipeline for the multidimensional analysis of branching morphogenesis. Nature Protocols, 2014, 9, 2859-2879.	12.0	44
30	Global Quantification of Tissue Dynamics in the Developing Mouse Kidney. Developmental Cell, 2014, 29, 188-202.	7.0	225
31	Luminal Mitosis Drives Epithelial Cell Dispersal within the Branching Ureteric Bud. Developmental Cell, 2013, 27, 319-330.	7. O	100
32	Modelling cell turnover in a complex tissue during development. Journal of Theoretical Biology, 2013, 338, 66-79.	1.7	10
33	MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biology of Reproduction, 2013, 88, 143-143.	2.7	68
34	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of Cell Biology, 2013, 203, 359-372.	5. 2	45
35	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of General Physiology, 2013, 142, 1425OIA43.	1.9	0
36	Epigenetics and developmental programming of adult onset diseases. Pediatric Nephrology, 2012, 27, 2175-2182.	1.7	38

#	Article	IF	Citations
37	Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Developmental Biology, 2012, 364, 89-98.	2.0	78
38	Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Developmental Biology, 2011, 360, 110-122.	2.0	153
39	Expression and Functional Analysis of Dkk1 during Early Gonadal Development. Sexual Development, 2011, 5, 124-130.	2.0	15
40	Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Human Molecular Genetics, 2011, 20, 2213-2224.	2.9	59
41	Epigenetic reprogramming: Enforcer or enabler of developmental fate?. Development Growth and Differentiation, 2010, 52, 483-491.	1.5	13
42	Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. International Journal of Developmental Biology, 2010, 54, 683-689.	0.6	46
43	Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Developmental Dynamics, 2009, 238, 956-964.	1.8	19
44	Threeâ€dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Developmental Dynamics, 2009, 238, 1033-1041.	1.8	82
45	Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.	2.0	164
46	Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Developmental Biology, 2009, 332, 273-286.	2.0	221
47	SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development. Journal of Biological Chemistry, 2007, 282, 10553-10560.	3.4	203
48	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.	2.0	251
49	Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development. Molecular Genetics and Metabolism, 2005, 86, 286-292.	1.1	5