## Alexander N Combes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482664/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.                         | 2.0  | 251       |
| 2  | Clobal Quantification of Tissue Dynamics in the Developing Mouse Kidney. Developmental Cell, 2014, 29, 188-202.                                                                                           | 7.0  | 225       |
| 3  | Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Developmental Biology, 2009, 332, 273-286. | 2.0  | 221       |
| 4  | SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development.<br>Journal of Biological Chemistry, 2007, 282, 10553-10560.                                              | 3.4  | 203       |
| 5  | Evaluation of variability in human kidney organoids. Nature Methods, 2019, 16, 79-87.                                                                                                                     | 19.0 | 176       |
| 6  | Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.                                                                                                      | 2.0  | 164       |
| 7  | Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome<br>Medicine, 2019, 11, 3.                                                                                 | 8.2  | 158       |
| 8  | Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Developmental<br>Biology, 2011, 360, 110-122.                                                                            | 2.0  | 153       |
| 9  | Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development (Cambridge), 2019, 146, .                              | 2.5  | 123       |
| 10 | Luminal Mitosis Drives Epithelial Cell Dispersal within the Branching Ureteric Bud. Developmental Cell, 2013, 27, 319-330.                                                                                | 7.0  | 100       |
| 11 | Kidney organoids: accurate models or fortunate accidents. Genes and Development, 2019, 33, 1319-1345.                                                                                                     | 5.9  | 97        |
| 12 | Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem<br>cell-derived kidney cells. Development (Cambridge), 2019, 146, .                                           | 2.5  | 97        |
| 13 | Threeâ€dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Developmental Dynamics, 2009, 238, 1033-1041.                                                | 1.8  | 82        |
| 14 | Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Developmental Biology, 2012, 364, 89-98.                        | 2.0  | 78        |
| 15 | Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Developmental Biology, 2016, 418, 297-306.                               | 2.0  | 71        |
| 16 | MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biology of Reproduction, 2013, 88, 143-143.                                                                          | 2.7  | 68        |
| 17 | Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Human Molecular Genetics, 2011, 20, 2213-2224.                                   | 2.9  | 59        |
| 18 | Cell–Cell Interactions Driving Kidney Morphogenesis. Current Topics in Developmental Biology, 2015, 112–467-508                                                                                           | 2.2  | 58        |

Alexander N Combes

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.                                                                   | 12.8 | 55        |
| 20 | DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. Journal of the American Society of Nephrology: JASN, 2019, 30, 63-78.                       | 6.1  | 52        |
| 21 | Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. ELife, 2018, 7, .                                                         | 6.0  | 50        |
| 22 | Nephron progenitor commitment is a stochastic process influenced by cell migration. ELife, 2019, 8, .                                                                             | 6.0  | 47        |
| 23 | Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation.<br>International Journal of Developmental Biology, 2010, 54, 683-689.    | 0.6  | 46        |
| 24 | Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures.<br>Journal of Cell Biology, 2013, 203, 359-372.                             | 5.2  | 45        |
| 25 | Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis.<br>Journal of Mathematical Biology, 2018, 76, 1673-1697.                            | 1.9  | 45        |
| 26 | An integrated pipeline for the multidimensional analysis of branching morphogenesis. Nature<br>Protocols, 2014, 9, 2859-2879.                                                     | 12.0 | 44        |
| 27 | Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5998-6003. | 7.1  | 39        |
| 28 | Epigenetics and developmental programming of adult onset diseases. Pediatric Nephrology, 2012, 27, 2175-2182.                                                                     | 1.7  | 38        |
| 29 | Understanding kidney morphogenesis to guide renal tissue regeneration. Nature Reviews Nephrology, 2016, 12, 624-635.                                                              | 9.6  | 38        |
| 30 | ROBO2 restricts the nephrogenic field and regulates Wolffian duct–nephrogenic cord separation.<br>Developmental Biology, 2015, 404, 88-102.                                       | 2.0  | 37        |
| 31 | Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney International, 2018, 93, 589-598.                  | 5.2  | 27        |
| 32 | Branching morphogenesis in the developing kidney is not impacted by nephron formation or integration. ELife, 2018, 7, .                                                           | 6.0  | 25        |
| 33 | A spatially-averaged mathematical model of kidney branching morphogenesis. Journal of Theoretical<br>Biology, 2015, 379, 24-37.                                                   | 1.7  | 22        |
| 34 | Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells Development (Cambridge), 2017, 144, 1087-1096.                | 2.5  | 22        |
| 35 | An InÂVitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports, 2020, 15, 1377-1391.                                   | 4.8  | 22        |
| 36 | Clearly imaging and quantifying the kidney in 3D. Kidney International, 2021, 100, 780-786.                                                                                       | 5.2  | 21        |

Alexander N Combes

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis.<br>Developmental Dynamics, 2009, 238, 956-964.                                         | 1.8 | 19        |
| 38 | Expression and Functional Analysis of Dkk1 during Early Gonadal Development. Sexual Development, 2011, 5, 124-130.                                                                     | 2.0 | 15        |
| 39 | Epigenetic reprogramming: Enforcer or enabler of developmental fate?. Development Growth and Differentiation, 2010, 52, 483-491.                                                       | 1.5 | 13        |
| 40 | Modelling cell turnover in a complex tissue during development. Journal of Theoretical Biology, 2013, 338, 66-79.                                                                      | 1.7 | 10        |
| 41 | Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. American Journal of<br>Pathology, 2022, 192, 738-749.                                                        | 3.8 | 10        |
| 42 | Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla<br>maturation. Journal of Pathology, 2016, 238, 665-676.                              | 4.5 | 7         |
| 43 | Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development. Molecular Genetics and Metabolism, 2005, 86, 286-292.                     | 1.1 | 5         |
| 44 | Towards a quantitative model of kidney morphogenesis. Nephrology, 2015, 20, 312-314.                                                                                                   | 1.6 | 5         |
| 45 | Heterozygous deletion of <i>Sox9</i> in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Human Molecular Genetics, 2021, 29, 3781-3792. | 2.9 | 5         |
| 46 | Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity. Cellular and<br>Molecular Life Sciences, 2022, 79, 296.                                               | 5.4 | 4         |
| 47 | PAX2+ Mesenchymal Origin of Gonadal Supporting Cells Is Conserved in Birds. Frontiers in Cell and Developmental Biology, 2021, 9, 735203.                                              | 3.7 | 3         |
| 48 | Analysed cap mesenchyme track data from live imaging of mouse kidney development. Data in Brief, 2016, 9, 149-154.                                                                     | 1.0 | 2         |
| 49 | Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures.<br>Journal of General Physiology, 2013, 142, 1425OIA43.                          | 1.9 | 0         |