
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4826034/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell, 2008, 133, 38-52.                                                                                                                    | 28.9 | 1,121     |
| 2  | Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer, 2010, 10, 165-180.                                                                                      | 28.4 | 1,050     |
| 3  | Eph receptor signalling casts a wide net on cell behaviour. Nature Reviews Molecular Cell Biology,<br>2005, 6, 462-475.                                                                                  | 37.0 | 933       |
| 4  | Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature<br>Neuroscience, 2003, 6, 153-160.                                                                           | 14.8 | 466       |
| 5  | The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization.<br>Oncogene, 2000, 19, 6043-6052.                                                                           | 5.9  | 336       |
| 6  | Eph Receptor Signaling and Ephrins. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009159-a009159.                                                                                                | 5.5  | 325       |
| 7  | Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport.<br>Nature Neuroscience, 2009, 12, 1285-1292.                                                              | 14.8 | 258       |
| 8  | Eph Receptors and Ephrins: Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2015, 55, 465-487.                                                                                   | 9.4  | 242       |
| 9  | Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>12524-12529. | 7.1  | 181       |
| 10 | An Ephrin Mimetic Peptide That Selectively Targets the EphA2 Receptor. Journal of Biological Chemistry, 2002, 277, 46974-46979.                                                                          | 3.4  | 179       |
| 11 | The EphA2 Receptor Drives Self-Renewal and Tumorigenicity in Stem-like Tumor-Propagating Cells from<br>Human Glioblastomas. Cancer Cell, 2012, 22, 765-780.                                              | 16.8 | 179       |
| 12 | Eph–ephrin promiscuity is now crystal clear. Nature Neuroscience, 2004, 7, 417-418.                                                                                                                      | 14.8 | 140       |
| 13 | Eph receptors in the adult brain. Current Opinion in Neurobiology, 2004, 14, 288-296.                                                                                                                    | 4.2  | 138       |
| 14 | Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a<br>Mechanoresponsive EPHA2/LYN Complex. Developmental Cell, 2020, 54, 302-316.e7.                                  | 7.0  | 128       |
| 15 | EphB Receptor-binding Peptides Identified by Phage Display Enable Design of an Antagonist with<br>Ephrin-like Affinity. Journal of Biological Chemistry, 2005, 280, 17301-17311.                         | 3.4  | 124       |
| 16 | Small Molecules Can Selectively Inhibit Ephrin Binding to the EphA4 and EphA2 Receptors. Journal of<br>Biological Chemistry, 2008, 283, 29461-29472.                                                     | 3.4  | 123       |
| 17 | Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene, 2000, 19, 177-187.     | 5.9  | 108       |
| 18 | Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2<br>juxtamembrane region. Oncogene, 1998, 16, 2657-2670.                                                    | 5.9  | 107       |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cellular Signalling, 2011, 23, 201-212.                                          | 3.6  | 95        |
| 20 | Targeting the EphA4 receptor in the nervous system with biologically active peptides. Molecular and Cellular Neurosciences, 2003, 24, 1000-1011.                                                        | 2.2  | 93        |
| 21 | Inhibition of Integrin-mediated Cell Adhesion but Not Directional Cell Migration Requires Catalytic<br>Activity of EphB3 Receptor Tyrosine Kinase. Journal of Biological Chemistry, 2005, 280, 923-932. | 3.4  | 92        |
| 22 | Targeting Eph receptors with peptides and small molecules: Progress and challenges. Seminars in Cell and Developmental Biology, 2012, 23, 51-57.                                                        | 5.0  | 89        |
| 23 | Ligand-Independent EPHA2 Signaling Drives the Adoption of a Targeted Therapy–Mediated Metastatic<br>Melanoma Phenotype. Cancer Discovery, 2015, 5, 264-273.                                             | 9.4  | 82        |
| 24 | Novel Targeted System To Deliver Chemotherapeutic Drugs to EphA2-Expressing Cancer Cells. Journal of Medicinal Chemistry, 2012, 55, 2427-2436.                                                          | 6.4  | 79        |
| 25 | EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid-β Oligomers. PLoS<br>ONE, 2014, 9, e92309.                                                                          | 2.5  | 75        |
| 26 | The EphA4 Receptor Regulates Neuronal Morphology through SPAR-Mediated Inactivation of Rap<br>GTPases. Journal of Neuroscience, 2007, 27, 14205-14215.                                                  | 3.6  | 74        |
| 27 | Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nature Communications, 2013, 4, 1681.                                                                        | 12.8 | 69        |
| 28 | The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Communications Biology, 2018, 1, 15.                                                             | 4.4  | 62        |
| 29 | Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897<br>phosphorylation. Molecular Biology of the Cell, 2016, 27, 2757-2770.                                      | 2.1  | 59        |
| 30 | The Eph family: a multitude of receptors that mediate cell recognition signals. Cell and Tissue Research, 1997, 290, 217-226.                                                                           | 2.9  | 58        |
| 31 | EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling. Journal of Biological<br>Chemistry, 2015, 290, 27271-27279.                                                                  | 3.4  | 58        |
| 32 | Ephrin-A6, a New Ligand for EphA Receptors in the Developing Visual System. Developmental Biology, 2001, 230, 74-88.                                                                                    | 2.0  | 56        |
| 33 | Structureâ^'Activity Relationship Analysis of Peptides Targeting the EphA2 Receptor. Biochemistry, 2010,<br>49, 6687-6695.                                                                              | 2.5  | 56        |
| 34 | Profiling Eph receptor expression in cells and tissues. Cell Adhesion and Migration, 2012, 6, 102-156.                                                                                                  | 2.7  | 54        |
| 35 | Targeted Delivery of Paclitaxel to EphA2-Expressing Cancer Cells. Clinical Cancer Research, 2013, 19, 128-137.                                                                                          | 7.0  | 53        |
| 36 | Targeting the Eph System with Peptides and Peptide Conjugates. Current Drug Targets, 2015, 16, 1031-1047.                                                                                               | 2.1  | 48        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Attenuation of Eph Receptor Kinase Activation in Cancer Cells by Coexpressed Ephrin Ligands. PLoS<br>ONE, 2013, 8, e81445.                                                                                              | 2.5 | 47        |
| 38 | Unliganded EphA3 dimerization promoted by the SAM domain. Biochemical Journal, 2015, 471, 101-109.                                                                                                                      | 3.7 | 45        |
| 39 | The SAM domain inhibits EphA2 interactions in the plasma membrane. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2017, 1864, 31-38.                                                                       | 4.1 | 43        |
| 40 | Development and Structural Analysis of a Nanomolar Cyclic Peptide Antagonist for the EphA4<br>Receptor. ACS Chemical Biology, 2014, 9, 2787-2795.                                                                       | 3.4 | 40        |
| 41 | Design and Synthesis of Potent Bivalent Peptide Agonists Targeting the EphA2 Receptor. ACS Medicinal<br>Chemistry Letters, 2013, 4, 344-348.                                                                            | 2.8 | 37        |
| 42 | Inhibition of EphB4–Ephrin-B2 Signaling Reprograms the Tumor Immune Microenvironment in Head and<br>Neck Cancers. Cancer Research, 2019, 79, 2722-2735.                                                                 | 0.9 | 36        |
| 43 | PEGylation Potentiates the Effectiveness of an Antagonistic Peptide That Targets the EphB4 Receptor with Nanomolar Affinity. PLoS ONE, 2011, 6, e28611.                                                                 | 2.5 | 36        |
| 44 | SORLA attenuates EphA4 signaling and amyloid β–induced neurodegeneration. Journal of Experimental<br>Medicine, 2017, 214, 3669-3685.                                                                                    | 8.5 | 35        |
| 45 | Design, Synthesis and Bioevaluation of an EphA2 Receptorâ€Based Targeted Delivery System.<br>ChemMedChem, 2014, 9, 1403-1412.                                                                                           | 3.2 | 31        |
| 46 | Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. ACS Medicinal<br>Chemistry Letters, 2017, 8, 726-731.                                                                                  | 2.8 | 31        |
| 47 | Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. Journal of Biological Chemistry, 2019, 294, 8791-8805.                                                                     | 3.4 | 31        |
| 48 | Association of the Breast Cancer Antiestrogen Resistance Protein 1 (BCAR1) and BCAR3 Scaffolding<br>Proteins in Cell Signaling and Antiestrogen Resistance. Journal of Biological Chemistry, 2014, 289,<br>10431-10444. | 3.4 | 29        |
| 49 | A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochimica Et<br>Biophysica Acta - General Subjects, 2016, 1860, 1922-1928.                                                      | 2.4 | 28        |
| 50 | Ligand bias in receptor tyrosine kinase signaling. Journal of Biological Chemistry, 2020, 295,<br>18494-18507.                                                                                                          | 3.4 | 28        |
| 51 | Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization. Oncotarget, 2015, 6, 8929-8946.                                                              | 1.8 | 25        |
| 52 | Noncanonical EphA2 Signaling Is a Driver of Tumor-Endothelial Cell Interactions and Metastatic<br>Dissemination in BRAF Inhibitor‒Resistant Melanoma. Journal of Investigative Dermatology, 2021, 141,<br>840-851.e4.   | 0.7 | 19        |
| 53 | Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas.<br>Scientific Reports, 2016, 6, 38792.                                                                                | 3.3 | 18        |
| 54 | Exosomes expand the sphere of influence of Eph receptors and ephrins. Journal of Cell Biology, 2016, 214, 5-7.                                                                                                          | 5.2 | 18        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Soluble SORLA Enhances Neurite Outgrowth and Regeneration through Activation of the EGF<br>Receptor/ERK Signaling Axis. Journal of Neuroscience, 2020, 40, 5908-5921.                                              | 3.6  | 17        |
| 56 | A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors.<br>Journal of Biological Chemistry, 2020, 295, 2601-2613.                                                     | 3.4  | 16        |
| 57 | Modifications of a Nanomolar Cyclic Peptide Antagonist for the EphA4 Receptor To Achieve High<br>Plasma Stability. ACS Medicinal Chemistry Letters, 2016, 7, 841-846.                                              | 2.8  | 15        |
| 58 | Evaluation of EphA2 and EphB4 as Targets for Image-Guided Colorectal Cancer Surgery. International<br>Journal of Molecular Sciences, 2017, 18, 307.                                                                | 4.1  | 14        |
| 59 | Genetically Encoded FRET Biosensor for Visualizing EphA4 Activity in Different Compartments of the<br>Plasma Membrane. ACS Sensors, 2019, 4, 294-300.                                                              | 7.8  | 11        |
| 60 | Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nature Communications, 2021, 12, 7047.                                                          | 12.8 | 11        |
| 61 | A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. Journal of Biological Chemistry, 2021, 297, 100876.                                                 | 3.4  | 9         |
| 62 | EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nature Communications, 2022, 13, .                                                                                               | 12.8 | 9         |
| 63 | Environmental enrichment during the chronic phase after experimental stroke promotes functional<br>recovery without synergistic effects of EphA4 targeted therapy. Human Molecular Genetics, 2020, 29,<br>605-617. | 2.9  | 8         |
| 64 | Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. IScience, 2022, 25, 103870.                                                      | 4.1  | 8         |
| 65 | Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in<br>leukemia cells. Journal of Biological Chemistry, 2022, 298, 101477.                                           | 3.4  | 6         |
| 66 | Protein kinase C phosphorylates the EphA2 receptor on serine 892 in the regulatory linker connecting the kinase and SAM domains. Cellular Signalling, 2020, 73, 109668.                                            | 3.6  | 5         |
| 67 | Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro-<br>to anti-oncogenic function of EPHA4. Cell Chemical Biology, 2022, 29, 970-984.e6.                                | 5.2  | 4         |
| 68 | Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat. Journal of Comparative Neurology, 2016, 524, 2462-2478.                                              | 1.6  | 3         |
| 69 | Journal club. Nature, 2009, 461, 149-149.                                                                                                                                                                          | 27.8 | 2         |
| 70 | Eph receptors and ephrins engage in cellular cannibalism. Journal of Cell Biology, 2019, 218, 3168-3170.                                                                                                           | 5.2  | 2         |
| 71 | EPH Receptors and Ephrins. , 2007, , 27-66.                                                                                                                                                                        |      | 1         |
| 72 | Direct Quantification of Ligandâ€Induced Lipid and Protein Microdomains with Distinctive Signaling<br>Properties**. ChemSystemsChem, 2022, 4, .                                                                    | 2.6  | 1         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structural and Binding Study on the Interaction of Small Molecule Antagonists with the EphA4<br>Receptor. FASEB Journal, 2009, 23, LB297.                                                                | 0.5 | 0         |
| 74 | Role of the EphA4 and EphA7 genes in mediating the growth and aggressiveness of medulloblastoma tumors in the Smo/Smo medulloblastoma mouse model Journal of Clinical Oncology, 2014, 32, e22137-e22137. | 1.6 | 0         |