Laetitia Koppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825928/publications.pdf

Version: 2024-02-01

304743 254184 2,008 52 22 43 h-index citations g-index papers 53 53 53 2966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	p-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. Journal of the American Society of Nephrology: JASN, 2013, 24, 88-99.	6.1	216
2	Probiotics and chronic kidney disease. Kidney International, 2015, 88, 958-966.	5.2	181
3	Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiology, 2014, 9, 399-410.	2.0	129
4	Kidney cachexia or proteinâ€energy wasting in chronic kidney disease: facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 479-484.	7.3	124
5	Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie, 2013, 95, 1971-1979.	2.6	115
6	Urea impairs \hat{I}^2 cell glycolysis and insulin secretion in chronic kidney disease. Journal of Clinical Investigation, 2016, 126, 3598-3612.	8.2	99
7	The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in theÂManagement of CKD. American Journal of Kidney Diseases, 2019, 73, 248-257.	1.9	75
8	A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney International, 2022, 101, 390-402.	5.2	72
9	Ozone Exposure Triggers Insulin Resistance Through Muscle c-Jun N-Terminal Kinase Activation. Diabetes, 2015, 64, 1011-1024.	0.6	69
10	Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins, 2020, 12, 300.	3.4	66
11	Performance of creatinine-based equations compared in older patients. Journal of Nephrology, 2013, 26, 716-723.	2.0	66
12	The ROMANOV study found impaired humoral and cellular immune responses to SARS-CoV-2 mRNA vaccine in virus-unexposed patients receiving maintenance hemodialysis. Kidney International, 2021, 100, 928-936.	5. 2	61
13	Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrology Dialysis Transplantation, 2014, 29, 1666-1674.	0.7	59
14	Vegetarian diets and chronic kidney disease. Nephrology Dialysis Transplantation, 2019, 34, 199-207.	0.7	58
15	Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney International, 2019, 95, 506-517.	5.2	55
16	The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins, 2018 , 10 , 155 .	3.4	54
17	White adipose tissue overproduces the lipid-mobilizing factor zinc α2-glycoprotein in chronic kidney disease. Kidney International, 2013, 83, 878-886.	5.2	47
18	Ketoacid Analogues Supplementation in Chronic Kidney Disease and Future Perspectives. Nutrients, 2019, 11, 2071.	4.1	45

#	Article	IF	Citations
19	Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Current Diabetes Reports, 2018, 18, 97.	4.2	43
20	Effects of Fecal Microbiota Transplantation on Composition in Mice with CKD. Toxins, 2020, 12, 741.	3.4	42
21	Myostatin and muscle atrophy during chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 1986-1993.	0.7	31
22	Protein-Bound Uremic Toxins…New Targets to Prevent Insulin Resistance and Dysmetabolism in Patients With Chronic Kidney Disease. , 2013, 23, 464-466.		29
23	Microbiota and prebiotics modulation of uremic toxin generation. Panminerva Medica, 2017, 59, 173-187.	0.8	26
24	Distal Colon Motor Dysfunction in Mice with Chronic Kidney Disease: Putative Role of Uremic Toxins. Toxins, 2018, 10, 204.	3.4	25
25	The Relationship between Renal Function and Plasma Concentration of the Cachectic Factor Zinc-Alpha2-Glycoprotein (ZAG) in Adult Patients with Chronic Kidney Disease. PLoS ONE, 2014, 9, e103475.	2.5	24
26	p-Cresyl glucuronide is a major metabolite of p-cresol in mouse: in contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Nephrology Dialysis Transplantation, 2017, 32, 2000-2009.	0.7	24
27	A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Scientific Reports, 2021, 11, 19184.	3.3	19
28	CMPF: A Biomarker for Type 2 Diabetes Mellitus Progression?. Trends in Endocrinology and Metabolism, 2016, 27, 439-440.	7.1	18
29	Accumulation of natriuretic peptides is associated with protein energy wasting and activation of browning in white adipose tissue in chronic kidney disease. Kidney International, 2020, 98, 663-672.	5.2	18
30	Human Uremic Plasma and not Urea Induces Exuberant Secretion of Leptin in 3T3-L1 Adipocytes., 2011, 21, 72-75.		17
31	Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a Clinically Relevant Uremic Toxin in Haemodialysis Patients?. Toxins, 2018, 10, 205.	3.4	16
32	Serum levels of the adipokine zinc-alpha2-glycoprotein (ZAG) predict mortality in hemodialysis patients. Kidney International, 2018, 94, 983-992.	5.2	13
33	New clinical evidence for urea toxicity. Nephrology Dialysis Transplantation, 2021, 37, 1-4.	0.7	9
34	Source and Composition in Amino Acid of Dietary Proteins in the Primary Prevention and Treatment of CKD. Nutrients, 2020, 12, 3892.	4.1	8
35	Probiotic Intake and Inflammation in Patients With Chronic Kidney Disease: An Analysis of the CKD-REIN Cohort. Frontiers in Nutrition, 2022, 9, 772596.	3.7	7
36	Natriuretic Peptides as Predictors of Protein-Energy Wasting in Hemodialysis Population., 2022, 32, 234-242.		6

#	Article	IF	Citations
37	COVID-19 vaccine acceptance among haemodialysis patients: a French survey. CKJ: Clinical Kidney Journal, 2021, 14, 1985-1986.	2.9	6
38	The protein-bound uremic toxin p-cresyl-sulfate promotes intracellular ROS production and lipid peroxidation in 3T3-L1 adipose cells. Biochimie, 2021, 189, 137-143.	2.6	6
39	Intradialytic oral nutrition—the ultimate conviction. Nature Reviews Nephrology, 2014, 10, 11-12.	9.6	5
40	Evolution of renal function in patients with severe intestinal failure on home parenteral nutrition. CKJ: Clinical Kidney Journal, 2021, 14, 925-932.	2.9	5
41	3-methylhistidine and clinical outcomes in maintenance haemodialysis patients. Nephrology Dialysis Transplantation, 2022, 37, 1951-1961.	0.7	5
42	Is there still a place for prebiotics in chronic kidney disease?. Nephrology Dialysis Transplantation, 2019, 34, 1812-1816.	0.7	4
43	A call for a better understanding of the role of dietary amino acids and post-translational protein modifications of the microbiome in the progression of CKD. Nephrology Dialysis Transplantation, 2021, 36, 1357-1360.	0.7	4
44	P0922A LOW AROMATIC AMINO-ACID DIET IMPROVES RENAL FUNCTION AND PREVENTS KIDNEY FIBROSIS IN MICE WITH CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	3
45	Preservation of residual kidney function to reduce non-urea solutes toxicity in haemodialysis. Nephrology Dialysis Transplantation, 2020, 35, 733-736.	0.7	2
46	SP351INTEREST OF FREE VITAMIN D IN CKD. Nephrology Dialysis Transplantation, 2017, 32, iii228-iii228.	0.7	1
47	Crescentic glomerulonephritis with ANTI-PR3 ANCA associated with <i>Bartonella Henselae</i> infective endocarditis. CKJ: Clinical Kidney Journal, 0, , .	2.9	1
48	Which optimal protein intake in maintenance dialysis patients?. Journal of Human Nutrition and Dietetics, 2013, 26, 313-314.	2.5	0
49	SaO045ACTIVATION OF BROWNING IN WHITE ADIPOSE TISSUE DURING CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2018, 33, i334-i334.	0.7	0
50	MO461FGF19 IMPROVES GLUCOSE METABOLISM IN CKD MICE. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
51	Therapeutic strategies to limit tryptophan metabolites toxicity during chronic kidney disease. , 2022, , 281-295.		0
52	The very last dance of unconjugated p-cresol historical artifact of uremic research Nephrology Dialysis Transplantation, 2021, , .	0.7	0