
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Fungal Versatile GH10 Endoxylanase and Its Glycosynthase Variant: Synthesis of Xylooligosaccharides and Glycosides of Bioactive Phenolic Compounds. International Journal of Molecular Sciences, 2022, 23, 1383.	4.1	3
2	Glycosylation of Epigallocatechin Gallate by Engineered Glycoside Hydrolases from Talaromyces amestolkiae: Potential Antiproliferative and Neuroprotective Effect of These Molecules. Antioxidants, 2022, 11, 1325.	5.1	5
3	The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydrate Polymers, 2021, 253, 117254.	10.2	22
4	Enzymatic glycosylation of bioactive acceptors catalyzed by an immobilized fungal β-xylosidase and its multi-glycoligase variant. International Journal of Biological Macromolecules, 2021, 167, 245-254.	7.5	6
5	Evaluation of an O2-Substituted (1–3)-β-D-Glucan, Produced by Pediococcus parvulus 2.6, in ex vivo Models of Crohn's Disease. Frontiers in Microbiology, 2021, 12, 621280.	3.5	5
6	Versatile Lipases from the <i>Candida rugosa</i> -like Family: A Mechanistic Insight Using Computational Approaches. Journal of Chemical Information and Modeling, 2021, 61, 913-920.	5.4	9
7	Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. Bioresource Technology, 2021, 324, 124623.	9.6	44
8	Characterization of a Dye-Decolorizing Peroxidase from Irpex lacteus Expressed in Escherichia coli: An Enzyme with Wide Substrate Specificity Able to Transform Lignosulfonates. Journal of Fungi (Basel,) Tj ETQq0	0 :1 3:383 0	O ve rlock 10
9	Optimization of $\hat{1}^2$ -1,4-Endoxylanase Production by an Aspergillus niger Strain Growing on Wheat Straw and Application in Xylooligosaccharides Production. Molecules, 2021, 26, 2527.	3.8	15
10	Production of a β-Glucosidase-Rich Cocktail from Talaromyces amestolkiae Using Raw Glycerol: Its Role for Lignocellulose Waste Valorization. Journal of Fungi (Basel, Switzerland), 2021, 7, 363.	3.5	1
11	Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin. Foods, 2021, 10, 2004.	4.3	17
12	Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. International Microbiology, 2021, 24, 545-558.	2.4	17
13	Immobilized Forms of the Ophiostoma piceae Lipase for Green Synthesis of Biodiesel. Comparison with Eversa Transform 2.0 and Cal A. Journal of Fungi (Basel, Switzerland), 2021, 7, 822.	3.5	7
14	Sustainable and Green Synthesis of Stanol Esters from Oil Wastes. Journal of Agricultural and Food Chemistry, 2021, 69, 286-293.	5.2	2
15	Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification. International Journal of Molecular Sciences, 2021, 22, 13611.	4.1	5
16	Thioglycoligase derived from fungal GH3 Î ² -xylosidase is a multi-glycoligase with broad acceptor tolerance. Nature Communications, 2020, 11, 4864.	12.8	21
17	A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microbial Cell Factories, 2020, 19, 127.	4.0	25
18	Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Applied Energy, 2020, 262, 114493.	10.1	59

ALICIA PRIETO

#	Article	IF	CITATIONS
19	Immediate reactions with glatiramer acetate. Neurology: Clinical Practice, 2020, 10, 170-177.	1.6	Ο
20	A Sustainable Approach of Enzymatic Grafting onEucalyptus globulusWood by Laccase from the Newly Isolated White-Rot BasidiomyceteMarasmiellus palmivorusVE111. ACS Sustainable Chemistry and Engineering, 2019, 7, 13418-13424.	6.7	17
21	Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microbial Cell Factories, 2019, 18, 174.	4.0	7
22	Improvement of the Activity of a Fungal Versatile-Lipase Toward Triglycerides: An in silico Mechanistic Description. Frontiers in Bioengineering and Biotechnology, 2019, 7, 71.	4.1	7
23	Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microbial Cell Factories, 2019, 18, 97.	4.0	28
24	Different Modes of Regulation of the Expression of Dextransucrase in Leuconostoc lactis AV1n and Lactobacillus sakei MN1. Frontiers in Microbiology, 2019, 10, 959.	3.5	15
25	Effect of the Immobilization Strategy on the Efficiency and Recyclability of the Versatile Lipase from Ophiostoma piceae. Molecules, 2019, 24, 1313.	3.8	7
26	Heteropolysaccharide-producing bifidobacteria for the development of functional dairy products. LWT - Food Science and Technology, 2019, 102, 295-303.	5.2	9
27	Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 2019, 89, 613-622.	10.7	31
28	Rhizoctonia solani fucomannogalactan: Chemical characterization and antiproliferative activity. International Journal of Biological Macromolecules, 2018, 115, 106-113.	7.5	7
29	Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. LWT - Food Science and Technology, 2018, 90, 469-474.	5.2	9
30	The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: a versatile catalyst for biofuel production from plant and algal biomass. Biotechnology for Biofuels, 2018, 11, 123.	6.2	32
31	β-1,4-endoglucanases from Talaromyces amestolkiae: Production of glucooligosaccharides from different β-glucans. Biocatalysis and Biotransformation, 2018, 36, 68-77.	2.0	1
32	Characterization of Pediococcus ethanolidurans CUPV141: A β-D-glucan- and Heteropolysaccharide-Producing Bacterium. Frontiers in Microbiology, 2018, 9, 2041.	3.5	10
33	Analysis of technological and probiotic properties of Algerian L. mesenteroides strains isolated from dairy and non-dairy products. Journal of Functional Foods, 2018, 49, 351-361.	3.4	15
34	Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology. Food Chemistry, 2018, 261, 139-148.	8.2	20
35	Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains. Carbohydrate Polymers, 2017, 170, 52-59.	10.2	37
36	cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans. Molecular Microbiology, 2017, 105, 1-24.	2.5	17

#	Article	IF	CITATIONS
37	Enzymatic Synthesis of a Novel Neuroprotective Hydroxytyrosyl Glycoside. Journal of Agricultural and Food Chemistry, 2017, 65, 10526-10533.	5.2	30
38	Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach. Biotechnology for Biofuels, 2017, 10, 161.	6.2	25
39	Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers, 2017, 174, 646-657.	10.2	66
40	β-(1 → 3,1 → 6)- d -glucans produced by Diaporthe sp. endophytes: Purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. International Journal of Biological Macromolecules, 2017, 94, 431-437.	7.5	28
41	Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae. Food Chemistry, 2017, 221, 1458-1465.	8.2	29
42	Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts. Frontiers in Microbiology, 2017, 8, 2393.	3.5	15
43	Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. International Journal of Molecular Sciences, 2017, 18, 76.	4.1	46
44	Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-d-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae. Microbial Cell Factories, 2016, 15, 171.	4.0	13
45	Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnology Advances, 2016, 34, 874-885.	11.7	82
46	Degradation of bisphenol A by different fungal laccases and identification of its degradation products. International Biodeterioration and Biodegradation, 2016, 110, 181-188.	3.9	94
47	Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 2016, 18, 6046-6062.	9.0	84
48	Evidence of the presence of nucleic acids and β-glucan in the matrix of non-typeable Haemophilus influenzae in vitro biofilms. Scientific Reports, 2016, 6, 36424.	3.3	37
49	Properties, structure, and applications of microbial sterol esterases. Applied Microbiology and Biotechnology, 2016, 100, 2047-2061.	3.6	39
50	5â€hydroxymethylfurfural conversion by fungal arylâ€alcohol oxidase and unspecific peroxygenase. FEBS Journal, 2015, 282, 3218-3229.	4.7	132
51	Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 2015, 124, 292-301.	10.2	94
52	Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider. International Journal of Food Microbiology, 2015, 214, 54-62.	4.7	58
53	Novel pH-Stable Glycoside Hydrolase Family 3 β-Xylosidase from Talaromyces amestolkiae: an Enzyme Displaying Regioselective Transxylosylation. Applied and Environmental Microbiology, 2015, 81, 6380-6392.	3.1	39
54	Heterologous expression of a fungal sterol esterase/lipase in different hosts: Effect on solubility, glycosylation and production. Journal of Bioscience and Bioengineering, 2015, 120, 637-643.	2.2	17

#	Article	IF	CITATIONS
55	Comparative proteomic analyses reveal that Gnt2-mediated N -glycosylation affects cell wall glycans and protein content in Fusarium oxysporum. Journal of Proteomics, 2015, 128, 189-202.	2.4	7
56	Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: comparison with other enzymes of the Candida rugosa-like family. Applied Microbiology and Biotechnology, 2015, 99, 10057-10067.	3.6	19
57	Crystal structures of Ophiostoma piceae sterol esterase: Structural insights into activation mechanism and product release. Journal of Structural Biology, 2014, 187, 215-222.	2.8	32
58	A specific immunological method to detect and quantify bacterial 2-substituted (1,3)-β-d-glucan. Carbohydrate Polymers, 2014, 113, 39-45.	10.2	17
59	Enzymatic degradation of Elephant grass (Pennisetum purpureum) stems: Influence of the pith and bark in the total hydrolysis. Bioresource Technology, 2014, 167, 469-475.	9.6	19
60	Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment. World Journal of Microbiology and Biotechnology, 2013, 29, 2145-2155.	3.6	33
61	Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment. Biotechnology for Biofuels, 2013, 6, 115.	6.2	84
62	Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 2013, 14, 712.	2.8	31
63	Differential Recognition of Mannoseâ€Based Polysaccharides by Tripodal Receptors Based on a Triethylbenzene Scaffold Substituted with Trihydroxybenzoyl Moieties. European Journal of Organic Chemistry, 2013, 2013, 65-76.	2.4	11
64	Insight into the composition of the intercellular matrix of <i>Streptococcus pneumoniae</i> biofilms. Environmental Microbiology, 2013, 15, 502-516.	3.8	46
65	Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresource Technology, 2013, 131, 218-225.	9.6	51
66	Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzyme and Microbial Technology, 2013, 52, 303-311.	3.2	30
67	Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydrate Polymers, 2013, 93, 57-64.	10.2	95
68	Characterization of a Novel Dye-Decolorizing Peroxidase (DyP)-Type Enzyme from Irpex lacteus and Its Application in Enzymatic Hydrolysis of Wheat Straw. Applied and Environmental Microbiology, 2013, 79, 4316-4324.	3.1	125
69	Potential of <i>Ophiostoma piceae</i> sterol esterase for biotechnologically relevant hydrolysis reactions. Bioengineered, 2013, 4, 249-253.	3.2	11
70	The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence. PLoS ONE, 2013, 8, e84690.	2.5	15
71	Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival. PLoS ONE, 2013, 8, e66473.	2.5	28
72	Biodeinking of flexographic inks by fungal laccases using synthetic and natural mediators. Biochemical Engineering Journal, 2012, 67, 97-103.	3.6	41

#	Article	IF	CITATIONS
73	Characterization of Exopolysaccharides Produced by <i>Bifidobacterium longum</i> NB667 and Its Cholate-Resistant Derivative Strain IPLA B667dCo. Journal of Agricultural and Food Chemistry, 2012, 60, 1028-1035.	5.2	26
74	Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biology, 2011, 115, 862-870.	2.5	26
75	Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresource Technology, 2011, 102, 7500-7506.	9.6	282
76	An assessment of fungal wall heteromannans as a phylogenetically informative character in ascomycetes. FEMS Microbiology Reviews, 2010, 34, 986-1014.	8.6	29
77	The Basic Helixâ~'Loopâ~'Helix Region of Human Neurogenin 1 Is a Monomeric Natively Unfolded Protein Which Forms a "Fuzzy―Complex upon DNA Binding. Biochemistry, 2010, 49, 1577-1589.	2.5	36
78	Screening and Selection of 2-Branched (1,3)-β- <scp>d</scp> -Glucan Producing Lactic Acid Bacteria and Exopolysaccharide Characterization. Journal of Agricultural and Food Chemistry, 2010, 58, 6149-6156.	5.2	31
79	Structural Analysis of the Interactions Between Hsp70 Chaperones and the Yeast DNA Replication Protein Orc4p. Journal of Molecular Biology, 2010, 403, 24-39.	4.2	11
80	Cell wall polysaccharides isolated from the fungus Neotestudina rosatii, one of the etiologic agents of mycetoma in man. Glycoconjugate Journal, 2009, 26, 1047-1054.	2.7	5
81	Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresource Technology, 2009, 100, 6378-6384.	9.6	180
82	Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Journal of Dairy Science, 2009, 92, 4158-4168.	3.4	113
83	Structural elucidation of a cell wall fungal polysaccharide isolated from Ustilaginoidea virens, a pathogenic fungus of Oriza sativa and Zea mays. Carbohydrate Research, 2008, 343, 2980-2984.	2.3	9
84	Evaluation of Exopolysaccharide Production by Leuconostoc mesenteroides Strains Isolated from Wine. Journal of Food Science, 2008, 73, M196-M199.	3.1	26
85	Negative regulation of pPS10 plasmid replication: origin pairing by zippingâ€up DNAâ€bound RepA monomers. Molecular Microbiology, 2008, 68, 560-572.	2.5	24
86	A polysaccharide from Lichina pygmaea and L. confinis supports the recognition of Lichinomycetes. Mycological Research, 2008, 112, 381-388.	2.5	24
87	Heterologous Expression of a Position 2-Substituted (1→3)-β- <scp>d</scp> -Glucan in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2008, 74, 5259-5262.	3.1	31
88	The Helical Structure Propensity in the First Helix of the Histidine Phosphocarrier Protein of Streptomyces coelicolor. Protein and Peptide Letters, 2007, 14, 281-290.	0.9	7
89	Modification and Activation of Ras Proteins by Electrophilic Prostanoids with Different Structure are Site-Selective. Biochemistry, 2007, 46, 6607-6616.	2.5	62
90	Structure of a galactomannan isolated from the cell wall of the fungus Lineolata rhizophorae. Carbohydrate Research, 2007, 342, 2599-2603.	2.3	21

ALICIA PRIETO

#	Article	IF	CITATIONS
91	Isolation and structural determination of a unique polysaccharide containing mannofuranose from the cell wall of the fungus Acrospermum compressum. Glycoconjugate Journal, 2007, 24, 421-428.	2.7	12
92	Fungal cell wall polysaccharides isolated from Discula destructiva spp Carbohydrate Research, 2007, 342, 1138-1143.	2.3	19
93	Structural elucidation of fungal polysaccharides isolated from the cell wall of Plectosphaerella cucumerina and Verticillium spp Carbohydrate Research, 2006, 341, 246-252.	2.3	19
94	Screening of Garlic Water Extract for Binding Activity with Cholera Toxin B Pentamer by NMR Spectroscopy – An Old Remedy Giving a New Surprise. European Journal of Organic Chemistry, 2006, 2006, 2067-2073.	2.4	21
95	α-galf1→6-α-mannopyranoside side chains inParacoccidioides brasiliensiscell wall are shared by members of the Onygenales, but not by galactomannans of other fungal genera. Medical Mycology, 2005, 43, 153-159.	0.7	12
96	The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: A biophysical characterization. Protein Science, 2004, 13, 1512-1523.	7.6	44
97	Hydrolysis of sterol esters by an esterase from Ophiostoma piceae: application to pitch control in pulping of Eucalyptus globulus wood. International Journal of Biotechnology, 2004, 6, 367.	1.2	12
98	Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus. Glycoconjugate Journal, 2003, 20, 239-246.	2.7	36
99	Studies of new polysaccharides from lasallia pustulata (L.) Hoffm. Lichenologist, 2003, 35, 177-185.	0.8	23
100	Structural differences between the alkali-extracted water-soluble cell wall polysaccharides from mycelial and yeast phases of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. Glycobiology, 2003, 13, 743-747.	2.5	25
101	Structure of a Cell Wall Rhamnogalactomannan Isolated from Cubonia bulbifera. Journal of Carbohydrate Chemistry, 2003, 22, 603-611.	1.1	1
102	Cell wall polysaccharides F1SS disclose the relatedness of the genus Geosmithia with Eupenicillium and Talaromyces. Canadian Journal of Botany, 2002, 80, 410-415.	1.1	7
103	Alkali-extractable and water-soluble polysaccharide (F1SS): a chemotaxonomic and phylogenetic character for Cephalotheca. Mycological Research, 2002, 106, 1187-1192.	2.5	5
104	Structure of fungal polysaccharides isolated from the cell-wall of three strains of Verticillium fungicola. Carbohydrate Polymers, 2002, 50, 209-212.	10.2	10
105	Fungal cell wall galactomannan isolated from Apodus deciduus. Carbohydrate Research, 2002, 337, 1503-1506.	2.3	18
106	Fungal cell-wall galactomannans isolated from Geotrichum spp. and their teleomorphs, Dipodascus and Galactomyces. Carbohydrate Research, 2002, 337, 2347-2351.	2.3	19
107	Structure of a cell wall polysaccharide isolated from Hypocreagelatinosa. Carbohydrate Research, 2001, 333, 173-178.	2.3	8
108	Chemical structure of a polysaccharide isolated from the cell wall of Arachniotus verruculosus and A. ruber. Carbohydrate Research, 2001, 336, 325-328.	2.3	14

#	Article	IF	CITATIONS
109	Comparison of cell-wall polysaccharides from Nectria cinnabarina with those from the group of Nectria with Sesquicillium anamorphs. Microbiology (United Kingdom), 2001, 147, 1839-1849.	1.8	15
110	Heterogeneity of the genus Myrothecium as revealed by cell wall polysaccharides. Archives of Microbiology, 2000, 173, 296-302.	2.2	40
111	An acidic water-soluble cell wall polysaccharide: a chemotaxonomic marker for Fusarium and Gibberella. Mycological Research, 2000, 104, 603-610.	2.5	30
112	Structural characterization of a cell wall polysaccharide from <i>Penicillium vermoesenii</i> : chemotaxonomic application. Canadian Journal of Botany, 1999, 77, 961-968.	1.1	11
113	Galactomannans from the cell walls of species of Paecilomyces sect. Paecilomyces and their teleomorphs as immunotaxonomic markers. Microbiology (United Kingdom), 1999, 145, 2789-2796.	1.8	23
114	Structural characterization of a cell wall polysaccharide from <i>Penicillium vermoesenii</i> : chemotaxonomic application. Canadian Journal of Botany, 1999, 77, 961-968.	1.1	8
115	Possible chemotypes from cell wall polysaccharides, as an aid in the systematics of Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Mycological Research, 1997, 101, 1259-1264.	2.5	36
116	Structural elucidation of acidic fungal polysaccharides isolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydrate Research, 1997, 303, 67-72.	2.3	21
117	Studies on the structure and the solution conformation of an acidic extracellular polysaccharide isolated from Bradyrhizobium. Carbohydrate Research, 1997, 304, 209-217.	2.3	21
118	Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species. Carbohydrate Research, 1997, 304, 281-291.	2.3	37
119	Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus. Carbohydrate Research, 1996, 281, 143-154.	2.3	136
120	Structural investigation of a cell-wall galactomannan from Neurospora crassa and N. sitophila. Carbohydrate Research, 1996, 283, 215-222.	2.3	26
121	Isolation, purification and chemical characterization of alkali-extractable polysaccharides from the cell walls of Talaromyces species. Mycological Research, 1995, 99, 69-75.	2.5	29
122	Chemical structure of fungal cell-wall polysaccharides isolated from Microsporum gypseum and related species of Microsporum and Trychophyton. Carbohydrate Research, 1995, 272, 121-128.	2.3	24
123	Structural investigation of cell-wall polysaccharides from Neosartorya: relationships with their putative anamorphs of Aspergillus. Carbohydrate Research, 1995, 273, 255-262.	2.3	22
124	Polysaccharides from the Cell Walls of Pineapple Fruit. Journal of Agricultural and Food Chemistry, 1995, 43, 608-612.	5.2	13
125	Biochemical studies on the cell wall degradation of Fusarium oxysporum f. sp. lycopersici race 2 by its own lytic enzymes for its biocontrol. Letters in Applied Microbiology, 1995, 20, 105-109.	2.2	12
126	Cell wall degradation of Fusarium oxysporum f.sp. lycopersici race 2 by lytic enzymes from different Fusarium species for its biocontrol. Letters in Applied Microbiology, 1995, 20, 385-390.	2.2	4

#	Article	IF	CITATIONS
127	Cell wall polysaccharides of four strains ofPaecilomyces variotii. Current Microbiology, 1994, 28, 169-173.	2.2	5
128	Structural investigation of two cell-wall polysaccharides of Penicillium expansum strains. Carbohydrate Research, 1994, 257, 239-248.	2.3	31
129	Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus. Carbohydrate Research, 1994, 251, 315-325.	2.3	36
130	Biochemical studies on the cell wall degradation of Fusarium oxysporum f.sp. lycopersici race 2 by lytic enzymes from Mucorales for its biocontrol. Letters in Applied Microbiology, 1994, 18, 152-155.	2.2	5
131	Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 1994, 60, 1783-1788.	3.1	147
132	Structure and conformational features of an alkali- and water-soluble galactofuranan from the cell walls of Eupenicillium crustaceum. Carbohydrate Research, 1993, 244, 361-368.	2.3	21
133	Chemical structure and conformational features of cell-wall polysaccharides isolated from Aphanoascus mephitalus and related species. Carbohydrate Research, 1993, 250, 289-299.	2.3	15
134	Differences in cell wall polysaccharides of several species ofEupenicillium. FEMS Microbiology Letters, 1993, 108, 341-345.	1.8	19
135	Purification of a new galactanase from <i>Penicillium oxalicum</i> catalysing the hydrolysis of <i>l²</i> -(1→5)-galactofuran linkages. Biochemical Journal, 1992, 281, 657-660.	3.7	10
136	Chemical and structural similarities in wall polysaccharides of somePenicillium, EupenicilliumandAspergillusspecies. FEMS Microbiology Letters, 1992, 90, 165-168.	1.8	44
137	Low temperature thermal behaviour of chitins and chitin—glucans. Thermochimica Acta, 1992, 211, 241-254.	2.7	8
138	Fatty acid composition and taxonomic status of Ganoderma australe from southern chile. Mycological Research, 1991, 95, 782-784.	2.5	19
139	p-Hydroxyphenyl:Guaiacyl:Syringyl Ratio of Lignin in Some Austral Hardwoods Estimated by CuO-Oxidation and Solid-State NMR. Holzforschung, 1991, 45, 279-284.	1.9	21
140	Chemical composition and characterization of a galactomannoglucan from Gliocladium viride wall material. FEMS Microbiology Letters, 1990, 70, 331-336.	1.8	33
141	Chemical composition and characterization of a galactomannoglucan from wall material. FEMS Microbiology Letters, 1990, 70, 331-335.	1.8	4
142	Partial characterisation of galactofuranose-containing heteropolysaccharides from the cell walls of Talaromyces helicus. Carbohydrate Research, 1988, 177, 265-272.	2.3	27