Xiaoqing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Convolutional Encoderâ€Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media. Water Resources Research, 2019, 55, 703-728.	4.2	201
2	Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size. Water Research, 2015, 68, 24-33.	11.3	176
3	Deep Autoregressive Neural Networks for Highâ€Dimensional Inverse Problems in Groundwater Contaminant Source Identification. Water Resources Research, 2019, 55, 3856-3881.	4.2	157
4	Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere, 2016, 150, 694-701.	8.2	119
5	Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Engineering Geology, 2008, 100, 27-42.	6.3	88
6	The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China. Environmental Earth Sciences, 2016, 75, 1.	2.7	74
7	Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China. Engineering Geology, 2012, 124, 77-89.	6.3	69
8	Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China. Environmental Geology, 2007, 52, 27-40.	1.2	68
9	Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Nonâ€Gaussian Hydraulic Conductivities. Water Resources Research, 2020, 56, e2019WR026082.	4.2	67
10	Characterization of regional land subsidence in Yangtze Delta, China: the example of Su-Xi-Chang area and the city of Shanghai. Hydrogeology Journal, 2008, 16, 593-607.	2.1	60
11	Retention and transport of graphene oxide in water-saturated limestone media. Chemosphere, 2017, 180, 506-512.	8.2	58
12	Assessment of parametric uncertainty for groundwater reactive transport modeling. Water Resources Research, 2014, 50, 4416-4439.	4.2	55
13	Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Science of the Total Environment, 2016, 563-564, 987-995.	8.0	53
14	Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation, 2011, 22, 335-345.	3.0	51
15	Retention and Release of Graphene Oxide in Structured Heterogeneous Porous Media under Saturated and Unsaturated Conditions. Environmental Science & Technology, 2016, 50, 10397-10405.	10.0	49
16	Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: Combined effects of surfactant solubilization and oxidant degradation. Chemical Engineering Journal, 2016, 283, 595-603.	12.7	48
17	The development and control of the land subsidence in the Yangtze Delta, China. Environmental Geology, 2008, 55, 1725-1735.	1.2	45
18	Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media, Water, Air, and Soil Pollution, 2014, 225, 1	2.4	45

XIAOQING SHI

#	Article	IF	CITATIONS
19	Numerical Simulation of Viscoelastoplastic Land Subsidence due to Groundwater Overdrafting in Shanghai, China. Journal of Hydrologic Engineering - ASCE, 2010, 15, 223-236.	1.9	40
20	Effects of error covariance structure on estimation of model averaging weights and predictive performance. Water Resources Research, 2013, 49, 6029-6047.	4.2	40
21	A Taylor Expansionâ€Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling. Water Resources Research, 2017, 53, 10802-10823.	4.2	40
22	Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. Journal of Hydrology, 2022, 604, 127244.	5.4	39
23	Influence of flow velocity and spatial heterogeneity on DNAPL migration in porous media: insights from laboratory experiments and numerical modelling. Hydrogeology Journal, 2015, 23, 1703-1718.	2.1	38
24	Numerical simulation of land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, China. Environmental Geology, 2009, 57, 1409-1421.	1.2	37
25	Excessive groundwater withdrawal and resultant land subsidence in the Su-Xi-Chang area, China. Environmental Earth Sciences, 2010, 61, 1135-1143.	2.7	37
26	Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems With a Kalmanâ€inspired Proposal Distribution. Water Resources Research, 2020, 56, e2019WR025474.	4.2	33
27	Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration – Comparison with high-resolution light transmission visualization in laboratory sandbox. Journal of Hydrology, 2017, 544, 254-266.	5.4	30
28	Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data. Journal of Hydrology, 2019, 578, 124092.	5.4	27
29	Hydrogeophysical Characterization of Nonstationary DNAPL Source Zones by Integrating a Convolutional Variational Autoencoder and Ensemble Smoother. Water Resources Research, 2021, 57, e2020WR028538.	4.2	27
30	U(VI) Bioreduction with Emulsified Vegetable Oil as the Electron Donor – Microcosm Tests and Model Development. Environmental Science & Technology, 2013, 47, 3209-3217.	10.0	26
31	Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering. Journal of Hydrology, 2018, 567, 149-164.	5.4	26
32	Transport of sulfacetamide and levofloxacin in granular porous media under various conditions: Experimental observations and model simulations. Science of the Total Environment, 2016, 573, 1630-1637.	8.0	24
33	Simulation of regional land subsidence in the southern Yangtze Delta. Science in China Series D: Earth Sciences, 2008, 51, 808-825.	0.9	23
34	Biodegradation of Pyrene by Free and Immobilized Cells of Herbaspirillum chlorophenolicum Strain FA1. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	21
35	Effects of surface active agents on DNAPL migration and distribution in saturated porous media. Science of the Total Environment, 2016, 571, 1147-1154.	8.0	21
36	An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling. Computers and Geosciences, 2019, 125, 69-77.	4.2	20

XIAOQING SHI

#	Article	IF	CITATIONS
37	Comparing Nonlinear Regression and Markov Chain Monte Carlo Methods for Assessment of Prediction Uncertainty in Vadose Zone Modeling. Vadose Zone Journal, 2012, 11, vzj2011.0147.	2.2	18
38	Improved Characterization of DNAPL Source Zones via Sequential Hydrogeophysical Inversion of Hydraulicâ€Head, Selfâ€Potential and Partitioning Tracer Data. Water Resources Research, 2020, 56, e2020WR027627.	4.2	18
39	Efficient biosorption of Pb(II) from aqueous solutions by a PAH-degrading strain Herbaspirillum chlorophenolicum FA1. Journal of Industrial and Engineering Chemistry, 2018, 57, 64-71.	5.8	17
40	Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique. Environmental Monitoring and Assessment, 2018, 190, 187.	2.7	16
41	Retention and Transport of Bisphenol A and Bisphenol S in Saturated Limestone Porous Media. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	16
42	Integrating deep learning-based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation. Journal of Hydrology, 2021, 601, 126655.	5.4	16
43	Complex conductivity of oil-contaminated clayey soils. Journal of Hydrology, 2018, 561, 930-942.	5.4	15
44	Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix×Aureo-PendulaCL 'j1011'). International Journal of Phytoremediation, 2016, 18, 150-156.	3.1	13
45	Characterization of the regional groundwater quality evolution in the North Plain of Jiangsu Province, China. Environmental Earth Sciences, 2015, 74, 5587-5604.	2.7	11
46	Transport of a PAH-degrading bacterium in saturated limestone media under various physicochemical conditions: Common and unexpected retention and remobilization behaviors. Journal of Hazardous Materials, 2019, 380, 120858.	12.4	11
47	Effect of root exudates on the stability and transport of graphene oxide in saturated porous media. Journal of Hazardous Materials, 2021, 413, 125362.	12.4	11
48	Experimental and numerical modeling of chemical osmosis in the clay samples of the aquitard in the North China Plain. Environmental Earth Sciences, 2016, 75, 1.	2.7	9
49	Comprehensive evaluation of shallow groundwater quality in Central and Southern Jiangsu Province, China. Environmental Earth Sciences, 2017, 76, 1.	2.7	9
50	Retention and Transport of PAH-Degrading Bacterium Herbaspirillum chlorophenolicum FA1 in Saturated Porous Media Under Various Physicochemical Conditions. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	9
51	Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration. Environmental Pollution, 2019, 254, 112940.	7.5	9
52	Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments. Journal of Contaminant Hydrology, 2020, 230, 103603.	3.3	9
53	Deep learning based optimization under uncertainty for surfactant-enhanced DNAPL remediation in highly heterogeneous aquifers. Journal of Hydrology, 2022, 608, 127639.	5.4	8
54	Joint inversion of physical and geochemical parameters in groundwater models by sequential ensemble-based optimal design. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1919-1937.	4.0	7

XIAOQING SHI

#	Article	IF	CITATIONS
55	Design of diamond piezoelectric micro displacement amplification mechanism. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23, 803-809.	0.5	6
56	Characterization of the non-Gaussian hydraulic conductivity field via deep learning-based inversion of hydraulic-head and self-potential data. Journal of Hydrology, 2022, 610, 127830.	5.4	6
57	Global Sensitivity Analysis of Reactive Transport Modeling of CO2 Geological Storage in a Saline Aquifer. Procedia Earth and Planetary Science, 2013, 7, 798-801.	0.6	5
58	Advances in Multiphase Flow and Transport in the Subsurface Environment. Geofluids, 2018, 2018, 1-2.	0.7	5
59	Clinical manifestations of Kawasaki disease in different age groups: retrospective data from Southwest China. Clinical Rheumatology, 2020, 39, 3027-3032.	2.2	5
60	Simulation of Core Phases From Coda Interferometry. Journal of Geophysical Research: Solid Earth, 2018, 123, 4983-4999.	3.4	4
61	Optimized arrays for electrical resistivity tomography survey using Bayesian experimental design. Geophysics, 2022, 87, E189-E203.	2.6	4
62	Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture. Journal of Contaminant Hydrology, 2021, 241, 103809.	3.3	3
63	The Co-application of Willow and Earthworms/Horseradish for Removal of Pentachlorophenol from Contaminated Soils. Soil and Sediment Contamination, 2013, 22, 498-509.	1.9	2
64	Identification of non-Gaussian parameters in heterogeneous aquifers by a modified probability conditioning method through hydraulic-head assimilation. Hydrogeology Journal, 2021, 29, 819-839.	2.1	2
65	Evaluation of the benefits of improved permeability estimation on high-resolution characterization of DNAPL distribution in aquifers with low-permeability lenses. Journal of Hydrology, 2021, 603, 126955.	5.4	2