Patrik Verstreken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4824591/publications.pdf

Version: 2024-02-01

23567 21540 114 14,427 126 58 citations h-index g-index papers 139 139 139 19430 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	reglock 10	Tf 50 742 To
2	Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions. Neuron, 2005, 47, 365-378.	8.1	734
3	A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell, 2018, 174, 982-998.e20.	28.9	616
4	Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Human Molecular Genetics, 2009, 18, 472-481.	2.9	512
5	Loss of Skywalker Reveals Synaptic Endosomes as Sorting Stations for Synaptic Vesicle Proteins. Cell, 2011, 145, 117-132.	28.9	445
6	<i>Drosophila parkin</i> mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development (Cambridge), 2004, 131, 2183-2194.	2.5	387
7	Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating. Neuron, 2003, 40, 733-748.	8.1	376
8	Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine, 2009, 1, 99-111.	6.9	360
9	WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17379-17384.	7.1	325
10	LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis. Neuron, 2012, 75, 1008-1021.	8.1	312
11	Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release. Cell, 2002, 109, 101-112.	28.9	305
12	Vitamin K ₂ Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science, 2012, 336, 1306-1310.	12.6	304
13	Shar-pei mediates cell proliferation arrest during imaginal disc growth inDrosophila. Development (Cambridge), 2002, 129, 5719-5730.	2.5	302
14	PINK1 Loss-of-Function Mutations Affect Mitochondrial Complex I Activity via NdufA10 Ubiquinone Uncoupling. Science, 2014, 344, 203-207.	12.6	300
15	The v-ATPase V 0 Subunit a1 Is Required for a Late Step in Synaptic Vesicle Exocytosis in Drosophila. Cell, 2005, 121, 607-620.	28.9	297
16	Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 2017, 8, 15295.	12.8	289
17	The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics, 2014, 23, 5227-5242.	2.9	264
18	Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis. Neuron, 2004, 43, 193-205.	8.1	225

#	Article	IF	Citations
19	Drosophila Fragile X Protein, DFXR, Regulates Neuronal Morphology and Function in the Brain. Neuron, 2002, 34, 961-972.	8.1	215
20	Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Frontiers in Synaptic Neuroscience, 2010, 2, 139.	2.5	206
21	Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Reports, 2015, 11, 1176-1183.	6.4	206
22	Loss of Bin1 Promotes the Propagation of Tau Pathology. Cell Reports, 2016, 17, 931-940.	6.4	206
23	A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals. Neuron, 2016, 92, 829-844.	8.1	202
24	Mitochondria at the Synapse. Neuroscientist, 2006, 12, 291-299.	3 . 5	180
25	The <scp>SAC</scp> 1 domain in synaptojanin is required forÂautophagosome maturation at presynapticÂterminals. EMBO Journal, 2017, 36, 1392-1411.	7.8	174
26	Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. ELife, 2018, 7, .	6.0	167
27	Drosophila NMNAT Maintains Neural Integrity Independent of Its NAD Synthesis Activity. PLoS Biology, 2006, 4, e416.	5 . 6	160
28	Membrane Lipids in Presynaptic Function and Disease. Neuron, 2016, 90, 11-25.	8.1	158
29	Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau. Neuron, 2018, 97, 823-835.e8.	8.1	151
30	Autophagy in the presynaptic compartment in health and disease. Journal of Cell Biology, 2017, 216, 1895-1906.	5 . 2	148
31	Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm. Neuron, 2008, 57, 27-40.	8.1	143
32	Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron, 2015, 88, 735-748.	8.1	140
33	LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. Journal of Cell Science, 2015, 128, 541–52.	2.0	134
34	Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components. Neuron, 2005, 46, 219-232.	8.1	129
35	Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in <i>Drosophila benchwarmer</i>). Journal of Cell Biology, 2005, 170, 127-139.	5.2	128
36	Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. Journal of Cell Biology, 2008, 182, 1007-1016.	5 . 2	121

#	Article	IF	CITATIONS
37	A Genome-Wide Search for Synaptic Vesicle Cycle Proteins in Drosophila. Neuron, 2000, 26, 45-50.	8.1	105
38	Tweek, an Evolutionarily Conserved Protein, Is Required for Synaptic Vesicle Recycling. Neuron, 2009, 63, 203-215.	8.1	104
39	Hsp90 Mediates Membrane Deformation and Exosome Release. Molecular Cell, 2018, 71, 689-702.e9.	9.7	103
40	Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. Cell Reports, 2016, 17, 1071-1086.	6.4	100
41	FM 1-43 Labeling of Synaptic Vesicle Pools at the Drosophila Neuromuscular Junction. Methods in Molecular Biology, 2008, 440, 349-369.	0.9	100
42	Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications, 2016, 7, 11710.	12.8	98
43	Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. Journal of Cell Biology, 2007, 179, 1481-1496.	5.2	97
44	<i>TBC1D24</i> genotype–phenotype correlation. Neurology, 2016, 87, 77-85.	1.1	97
45	Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila. Current Biology, 2006, 16, 1835-1843.	3.9	96
46	ELP3 Controls Active Zone Morphology by Acetylating the ELKS Family Member Bruchpilot. Neuron, 2011, 72, 776-788.	8.1	94
47	Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Research, 2008, 36, e114-e114.	14.5	91
48	Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release. Neuron, 2013, 77, 1097-1108.	8.1	91
49	Mapping Drosophila mutations with molecularly defined P element insertions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10860-10865.	7.1	89
50	Torsins Are Essential Regulators of Cellular Lipid Metabolism. Developmental Cell, 2016, 38, 235-247.	7.0	88
51	Endophilin Promotes a Late Step in Endocytosis at Glial Invaginations inDrosophilaPhotoreceptor Terminals. Journal of Neuroscience, 2003, 23, 10732-10744.	3.6	86
52	The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants. PLoS Genetics, 2012, 8, e1002456.	3.5	86
53	Synaptic vesicle trafficking and Parkinson's disease. Developmental Neurobiology, 2012, 72, 134-144.	3.0	83
54	Mutations in the Intellectual Disability Gene Ube2a Cause Neuronal Dysfunction and Impair Parkin-Dependent Mitophagy. Molecular Cell, 2013, 50, 831-843.	9.7	80

#	Article	IF	Citations
55	Reduced synaptic vesicle protein degradation at lysosomes curbs <i>TBC1D24/sky</i> -induced neurodegeneration. Journal of Cell Biology, 2014, 207, 453-462.	5.2	78
56	ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson's Disease. Neuron, 2018, 98, 1155-1169.e6.	8.1	77
57	Parkinson's disease: convergence on synaptic homeostasis. EMBO Journal, 2018, 37, .	7.8	76
58	Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Human Molecular Genetics, 2015, 24, 6736-6755.	2.9	64
59	Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metabolic Engineering, 2017, 43, 187-197.	7.0	64
60	Aconitase Causes Iron Toxicity in Drosophila pink1 Mutants. PLoS Genetics, 2013, 9, e1003478.	3.5	63
61	<i>straightjacket</i> is required for the synaptic stabilization of <i>cacophony</i> , a voltage-gated calcium channel $\hat{l}\pm 1$ subunit. Journal of Cell Biology, 2008, 181, 157-170.	5.2	61
62	Presynaptic protein homeostasis and neuronal function. Current Opinion in Genetics and Development, 2017, 44, 38-46.	3.3	56
63	In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nature Communications, 2016, 7, 13660.	12.8	55
64	Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nature Structural and Molecular Biology, 2016, 23, 965-973.	8.2	55
65	Conditional Mutagenesis in <i>Drosophila</i> . Science, 2009, 324, 54-54.	12.6	51
66	Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila. Human Molecular Genetics, 2012, 21, 2698-2712.	2.9	51
67	Cardiolipin promotes electron transport between ubiquinone and complex I to rescue <i>PINK1</i> deficiency. Journal of Cell Biology, 2017, 216, 695-708.	5.2	48
68	Trapping of Syntaxin1a in Presynaptic Nanoclusters by a Clinically Relevant General Anesthetic. Cell Reports, 2018, 22, 427-440.	6.4	45
69	TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model. Brain, 2019, 142, 2319-2335.	7.6	44
70	Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron, 2021, 109, 767-777.e5.	8.1	41
71	Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila. PLoS Genetics, 2013, 9, e1003911.	3.5	39
72	Near-Infrared 808 nm Light Boosts Complex IV-Dependent Respiration and Rescues a Parkinson-Related pink1 Model. PLoS ONE, 2013, 8, e78562.	2.5	39

#	Article	IF	Citations
73	CEP89 is required for mitochondrial metabolism and neuronal function in man and fly. Human Molecular Genetics, 2013, 22, 3138-3151.	2.9	38
74	HDAC6 Is a Bruchpilot Deacetylase that Facilitates Neurotransmitter Release. Cell Reports, 2014, 8, 94-102.	6.4	38
75	Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval. Journal of Cell Biology, 2014, 204, 1141-1156.	5.2	38
76	Impaired Autonomic Regulation of Resistance Arteries in Mice With Low Vascular Endothelial Growth Factor or Upon Vascular Endothelial Growth Factor Trap Delivery. Circulation, 2010, 122, 273-281.	1.6	37
77	Chronological requirements of TDP-43 function in synaptic organization and locomotive control. Neurobiology of Disease, 2014, 71, 95-109.	4.4	36
78	Neurons Generated from APP/APLP1/APLP2 Triple Knockout Embryonic Stem Cells Behave Normally in Vitro and in Vivo: Lack of Evidence for a Cell Autonomous Role of the Amyloid Precursor Protein in Neuronal Differentiation. Stem Cells, 2010, 28, 399-406.	3.2	35
79	Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathologica, 2021, 141, 173-192.	7.7	35
80	<i>Drosophila rugose</i> Is a Functional Homolog of Mammalian <i>Neurobeachin</i> Is and Affects Synaptic Architecture, Brain Morphology, and Associative Learning. Journal of Neuroscience, 2012, 32, 15193-15204.	3.6	34
81	De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila. European Journal of Human Genetics, 2016, 24, 1145-1153.	2.8	34
82	Shawn, the <i>Drosophila </i> Homolog of SLC25A39/40, Is a Mitochondrial Carrier That Promotes Neuronal Survival. Journal of Neuroscience, 2016, 36, 1914-1929.	3.6	33
83	Neurologic Dysfunction and Male Infertility in Drosophila porin Mutants. Journal of Biological Chemistry, 2010, 285, 11143-11153.	3.4	32
84	EndoA/Endophilin-A creates docking stations for autophagic proteins at synapses. Autophagy, 2017, 13, 971-972.	9.1	32
85	Flies with Parkinson's disease. Experimental Neurology, 2015, 274, 42-51.	4.1	29
86	Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites. Neuropharmacology, 2020, 169, 107554.	4.1	29
87	The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathologica Communications, 2022, 10, 4.	5.2	29
88	New Approaches for Studying Synaptic Development, Function, and Plasticity Using <i>Drosophila</i>)as a Model System. Journal of Neuroscience, 2013, 33, 17560-17568.	3.6	28
89	Therapeutic strategies in Parkinson's disease: what we have learned from animal models. Annals of the New York Academy of Sciences, 2015, 1338, 16-37.	3.8	27
90	Sub-diffraction imaging on standard microscopes through Photobleaching Microscopy with non-linear Processing. Journal of Cell Science, 2012, 125, 2257-66.	2.0	24

#	Article	IF	CITATIONS
91	Torsin and NEP1R1â€CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipidâ€dependent and lipidâ€independent mechanisms. EMBO Journal, 2021, 40, e106914.	7.8	24
92	Ubiquitin Ligase HUWE1 Regulates Axon Branching through the Wnt/ \hat{l}^2 -Catenin Pathway in a Drosophila Model for Intellectual Disability. PLoS ONE, 2013, 8, e81791.	2.5	23
93	Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia. Brain, 2020, 143, 1746-1765.	7.6	22
94	Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 49-58.	2.8	21
95	Metabolic Channeling of Carbamoyl Phosphate, a Thermolabile Intermediate. Journal of Biological Chemistry, 2002, 277, 18517-18522.	3.4	20
96	Fast and Efficient <i>Drosophila melanogaster</i> Gene Knock-Ins Using MiMIC Transposons. G3: Genes, Genomes, Genetics, 2014, 4, 2381-2387.	1.8	17
97	Meaningless minis? Mechanisms of neurotransmitter-receptor clustering. Trends in Neurosciences, 2002, 25, 383-385.	8.6	15
98	Synaptic vesicle retrieval: still time for a kiss. Nature Cell Biology, 2002, 4, E245-E248.	10.3	15
99	Neurons eat glutamate to stay alive. Journal of Cell Biology, 2017, 216, 863-865.	5. 2	15
100	Presynaptic Autophagy and the Connection With Neurotransmission. Frontiers in Cell and Developmental Biology, 2021, 9, 790721.	3.7	13
101	PIWIL1 protein power targets tau therapy. Nature Neuroscience, 2014, 17, 334-335.	14.8	11
102	A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations. ELife, 2020, 9, .	6.0	11
103	Do we still need animals? Surveying the role of animalâ€free models in Alzheimer's and Parkinson's disease research. EMBO Journal, 2022, 41, e110002.	7.8	11
104	Stimulation of electron transport as potential novel therapy in Parkinson's disease with mitochondrial dysfunction. Biochemical Society Transactions, 2015, 43, 275-279.	3.4	10
105	In Vivo Single-Molecule Tracking at the Drosophila Presynaptic Motor Nerve Terminal. Journal of Visualized Experiments, 2018, , .	0.3	10
106	MAPRE2 mutations result in altered human cranial neural crest migration, underlying craniofacial malformations in CSC-KT syndrome. Scientific Reports, 2021, 11, 4976.	3.3	10
107	Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiology of Disease, 2022, 163, 105595.	4.4	10
108	α-Synuclein and Tau: Mitochondrial Kill Switches. Neuron, 2018, 97, 3-4.	8.1	9

#	Article	IF	Citations
109	Imaging mitophagy in the fruit fly. Autophagy, 2018, 14, 1656-1657.	9.1	9
110	Molecule-to-Circuit Disease Mechanisms of a Synaptic SNAREopathy. Neuron, 2021, 109, 1-3.	8.1	9
111	Mitochondria Re-set Epilepsy. Neuron, 2019, 102, 907-910.	8.1	8
112	Synaptic proteostasis in Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 72-79.	4.2	7
113	NEUROSCIENCE: The Meaning of a Mini. Science, 2001, 293, 443-444.	12.6	6
114	FlAsH-FALI Inactivation of a Protein at the Third-Instar Neuromuscular Junction: Figure 1 Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5597.	0.3	5
115	Phosphoinositides at the Neuromuscular Junction of Drosophila melanogaster: A Genetic Approach. Methods in Cell Biology, 2012, 108, 227-247.	1.1	5
116	Reprogramming neurodegeneration in the big data era. Current Opinion in Neurobiology, 2018, 48, 167-173.	4.2	5
117	Ultrafast Synaptic Endocytosis Cycles to the Center Stage. Developmental Cell, 2014, 28, 5-6.	7.0	4
118	Synaptic tau and synaptogyrinâ€3 are promising targets to tackle tauopathies. Alzheimer's and Dementia, 2021, 17, e054187.	0.8	3
119	Construction and Expression of Tetracysteine-Tagged Proteins for FlAsH-FALI. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5596.	0.3	2
120	Chaperoning the synapseâ€"NMNAT protects Bruchpilot from crashing. EMBO Reports, 2013, 14, 5-6.	4.5	2
121	Assaying Mutants of Clathrin-Mediated Endocytosis in the Fly Eye. Methods in Molecular Biology, 2018, 1847, 109-119.	0.9	2
122	p13 protects against Parkinson's disease. EMBO Reports, 2018, 19, .	4.5	1
123	Purification of Soluble Recombinant Human Tau Protein from Bacteria Using Double-tag Affinity Purification. Bio-protocol, 2018, 8, e3043.	0.4	1
124	Synaptic Vesicle Endocytosis. , 2008, , 207-238.		0
125	Studying Synaptic Transmission at the Drosophila Neuromuscular Junction Using Advanced FM 1-43 Technology. Neuromethods, 2012, , 127-141.	0.3	0
126	The pathogenic mutation in tau defines the route of tau accumulation at presynapses Alzheimer's and Dementia, 2021, 17 Suppl 3, e053728.	0.8	0