
Rick G Kelsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4823725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key structural features in cis â€carane, (+)â€3â€carene, cis â€pinane, (+)â€Î±â€pinene, and (â^')â€Î²â€pinene inf turpentine beetle primary attraction when released with ethanol. Agricultural and Forest Entomology, 2020, 23, 243.	luencing r 1.3	ed 4
2	Red turpentine beetle primary attraction to (–)-β-pinene+ethanol in US Pacific Northwest ponderosa pine forests. PLoS ONE, 2020, 15, e0236276.	2.5	5
3	Predicting post-fire attack of red turpentine or western pine beetle on ponderosa pine and its impact on mortality probability in Pacific Northwest forests. Forest Ecology and Management, 2019, 434, 181-192.	3.2	14
4	Attraction of red turpentine beetle and other <scp>S</scp> colytinae to ethanol, 3â€carene or ethanol + 3â€carene in an <scp>O</scp> regon pine forest. Agricultural and Forest Entomology, 2018, 20, 272-278.	1.3	15
5	Ethanol and primary attraction of red turpentine beetle in fire stressed ponderosa pine. Forest Ecology and Management, 2017, 396, 44-54.	3.2	14
6	Physiological Stress and Ethanol Accumulation in Tree Stems and Woody Tissues at Sublethal Temperatures from Fire. BioScience, 2017, 67, 443-451.	4.9	30
7	Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal of Forest Research, 2014, 44, 554-561.	1.7	56
8	Ethanol Attracts Scolytid Beetles to Phytophthora ramorum Cankers on Coast Live Oak. Journal of Chemical Ecology, 2013, 39, 494-506.	1.8	39
9	Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Canadian Journal of Forest Research, 2003, 33, 870-884.	1.7	84
10	Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. Journal of Chemical Ecology, 2001, 27, 697-715.	1.8	54
11	Red turpentine beetle primary attraction increases linearly with (â^')â€Î²â€pinene+ethanol dose regardless of component ratios, and no change in response with addition of highâ€release frontalin. Agricultural and Forest Entomology, 0, , .	1.3	3