Anna Fontcuberta i Morral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide. ACS Applied Energy Materials, 2022, 5, 5298-5306.	2.5	3
2	Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorber. Materials Advances, 2022, 3, 1295-1303.	2.6	7
3	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	2.8	3
4	GaAs nanowires on Si nanopillars: towards large scale, phase-engineered arrays. Nanoscale Horizons, 2022, 7, 211-219.	4.1	4
5	Boron quantification, concentration mapping and picosecond excitons dynamics in High-Pressure-High-Temperature diamond by cathodoluminescence. Carbon, 2022, 191, 48-54.	5.4	3
6	Porous Nitride Light-Emitting Diodes. ACS Photonics, 2022, 9, 1256-1263.	3.2	5
7	Spatial Modulation of Vibrational and Luminescence Properties of Monolayer MoSâ,, Using a GaAs Nanowire Array. IEEE Journal of Quantum Electronics, 2022, 58, 1-8.	1.0	3
8	Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices. ACS Applied Nano Materials, 2022, 5, 5508-5515.	2.4	0
9	Image shift correction, noise analysis, and model fitting of (cathodo-)luminescence hyperspectral maps. Review of Scientific Instruments, 2022, 93, 053702.	0.6	2
10	Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D Materials, 2022, 9, 035018.	2.0	5
11	Coherent Hole Transport in Selective Area Grown Ge Nanowire Networks. Nano Letters, 2022, 22, 4269-4275.	4.5	8
12	Strain induced lifting of the charged exciton degeneracy in monolayer MoS ₂ on a GaAs nanomembrane. 2D Materials, 2022, 9, 045006.	2.0	4
13	Ni ₈₀ Fe ₂₀ nanotubes with optimized spintronic functionalities prepared by atomic layer deposition. Nanoscale, 2021, 13, 13451-13462.	2.8	9
14	Cubic, hexagonal and tetragonal FeGe _{<i>x</i>} phases (<i>x</i> = 1, 1.5, 2): Raman spectroscopy and magnetic properties. CrystEngComm, 2021, 23, 6506-6517.	1.3	1
15	Optical properties and carrier dynamics in Co-doped ZnO nanorods. Nanoscale Advances, 2021, 3, 214-222.	2.2	3
16	Lamellar carbon-aluminosilicate nanocomposites with macroscopic orientation. Nanoscale, 2021, 13, 13650-13657.	2.8	0
17	Towards defect-free thin films of the earth-abundant absorber zinc phosphide by nanopatterning. Nanoscale Advances, 2021, 3, 326-332.	2.2	13
18	Doping challenges and pathways to industrial scalability of III–V nanowire arrays. Applied Physics Reviews. 2021. 8	5.5	32

#	Article	IF	CITATIONS
19	van der Waals Epitaxy of Co _{10–<i>x</i>} Zn _{10–<i>y</i>} Mn _{<i>x</i>+<i>y</i>} Thin Films: Chemical Composition Engineering and Magnetic Properties. Journal of Physical Chemistry C, 2021, 125, 9391-9399.	1.5	1
20	Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon. Nano Letters, 2021, 21, 3139-3145.	4.5	18
21	The path towards 1 µm monocrystalline Zn ₃ P ₂ films on InP: substrate preparation, growth conditions and luminescence properties. JPhys Energy, 2021, 3, 034011.	2.3	8
22	Modeling the Shape Evolution of Selective Area Grown Zn ₃ P ₂ Nanoislands. Crystal Growth and Design, 2021, 21, 4732-4737.	1.4	1
23	The Advantage of Nanowire Configuration in Band Structure Determination. Advanced Functional Materials, 2021, 31, 2105426.	7.8	4
24	Raman spectroscopy and lattice dynamics calculations of tetragonally-structured single crystal zinc phosphide (Zn ₃ P ₂) nanowires. Nanotechnology, 2021, 32, 085704.	1.3	10
25	The Advantage of Nanowire Configuration in Band Structure Determination (Adv. Funct. Mater.) Tj ETQq1 1 0.78	4314 rgB1 7.8	[Qverlock](
26	Rotated domains in selective area epitaxy grown Zn ₃ P ₂ : formation mechanism and functionality. Nanoscale, 2021, 13, 18441-18450.	2.8	7
27	Raman tensor of zinc-phosphide (Zn ₃ P ₂): from polarization measurements to simulation of Raman spectra. Physical Chemistry Chemical Physics, 2021, 24, 63-72.	1.3	3
28	Semiconductor nanowires: to grow or not to grow?. Materials Today Nano, 2020, 9, 100058.	2.3	89
29	Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide. Nanoscale Horizons, 2020, 5, 274-282.	4.1	15
30	GaAs nanoscale membranes: prospects for seamless integration of Ill–Vs on silicon. Nanoscale, 2020, 12, 815-824.	2.8	12
31	Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials. Nano Letters, 2020, 20, 567-576.	4.5	22
32	Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nature Catalysis, 2020, 3, 55-63.	16.1	124
33	Heterotwin Zn ₃ P ₂ superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale, 2020, 12, 22534-22540.	2.8	7
34	3D Ordering at the Liquid–Solid Polar Interface of Nanowires. Advanced Materials, 2020, 32, e2001030.	11.1	10
35	Plasma-Enhanced Atomic Layer Deposition of Nickel Nanotubes with Low Resistivity and Coherent Magnetization Dynamics for 3D Spintronics. ACS Applied Materials & Interfaces, 2020, 12, 40443-40452.	4.0	14
36	Measuring the Optical Absorption of Single Nanowires. Physical Review Applied, 2020, 14, .	1.5	19

Anna Fontcuberta i Morral

#	Article	IF	CITATIONS
37	<i>In-situ</i> reflectometry to monitor locally-catalyzed initiation and growth of nanowire assemblies. Nanotechnology, 2020, 31, 335703.	1.3	1
38	Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation. Nanotechnology, 2020, 31, 404003.	1.3	11
39	Facet-driven formation of axial and radial In(Ga)As clusters in GaAs nanowires. Journal of Optics (United Kingdom), 2020, 22, 084002.	1.0	5
40	van der Waals Epitaxy of Earth-Abundant Zn ₃ P ₂ on Graphene for Photovoltaics. Crystal Growth and Design, 2020, 20, 3816-3825.	1.4	24
41	Remote Doping of Scalable Nanowire Branches. Nano Letters, 2020, 20, 3577-3584.	4.5	13
42	Does desorption affect the length distributions of nanowires?. Nanotechnology, 2019, 30, 475604.	1.3	3
43	Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence. Nanotechnology, 2019, 30, 405703.	1.3	6
44	Single-Crystalline γ-Ga ₂ S ₃ Nanotubes via Epitaxial Conversion of GaAs Nanowires. Nano Letters, 2019, 19, 8903-8910.	4.5	8
45	Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chemical Reviews, 2019, 119, 8958-8971.	23.0	158
46	The Role of Polarity in Nonplanar Semiconductor Nanostructures. Nano Letters, 2019, 19, 3396-3408.	4.5	31
47	Ill–V Integration on Si(100): Vertical Nanospades. ACS Nano, 2019, 13, 5833-5840.	7.3	24
48	Thermodynamic re-assessment of the Znâ \in P binary system. Materialia, 2019, 6, 100301.	1.3	13
49	Nanosails Showcasing Zn ₃ As ₂ as an Optoelectronicâ€Grade Earth Abundant Semiconductor. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900084.	1.2	8
50	Growth of nanowire arrays from micron-feature templates. Nanotechnology, 2019, 30, 285302.	1.3	1
51	Questioning liquid droplet stability on nanowire tips: from theory to experiment. Nanotechnology, 2019, 30, 285604.	1.3	9
52	Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensembles. Journal Physics D: Applied Physics, 2019, 52, 294002.	1.3	15
53	Fundamental aspects to localize self-catalyzed III-V nanowires on silicon. Nature Communications, 2019, 10, 869.	5.8	49
54	Unveiling Temperature-Dependent Scattering Mechanisms in Semiconductor Nanowires Using Optical-Pump Terahertz-Probe Spectroscopy. , 2019, , .		2

#	Article	IF	CITATIONS
55	Extraction of p-n junction properties and series resistance in GaAs nanowire-based solar cells using light concentration. Nanotechnology, 2019, 30, 094001.	1.3	4
56	Tuning adatom mobility and nanoscale segregation by twin formation and polytypism. Nanotechnology, 2019, 30, 054006.	1.3	3
57	Segregation scheme of indium in AlGaInAs nanowire shells. Physical Review Materials, 2019, 3, .	0.9	11
58	Observation of end-vortex nucleation in individual ferromagnetic nanotubes. Physical Review B, 2018, 97, .	1.1	22
59	Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. Nano Letters, 2018, 18, 49-57.	4.5	62
60	Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes. Nano Letters, 2018, 18, 964-970.	4.5	32
61	High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires. Nano Letters, 2018, 18, 3703-3710.	4.5	31
62	Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots. Nano Letters, 2018, 18, 2393-2401.	4.5	10
63	Template-Assisted Scalable Nanowire Networks. Nano Letters, 2018, 18, 2666-2671.	4.5	92
64	III-V Nanowires on Si for Applications in Photonics. , 2018, , .		0
65	Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality. Nanoscale, 2018, 10, 17080-17091.	2.8	31
66	Dopant-Induced Modifications of Ga <i>_x</i> In _(1–<i>x</i>) P Nanowire-Based p–n Junctions Monolithically Integrated on Si(111). ACS Applied Materials & Interfaces, 2018, 10, 32588-32596.	4.0	18
67	Plasmonic Photodetectors. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-13.	1.9	88
68	Coherent Two-Mode Dynamics of a Nanowire Force Sensor. Physical Review Applied, 2018, 9, .	1.5	13
69	Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C, 2018, 6, 6216-6221.	2.7	12
70	Bi-stability of contact angle and its role in tuning the morphology of self-assisted GaAs nanowires. , 2018, , .		0
71	Surface Defect Passivation of Silicon Micropillars. Advanced Materials Interfaces, 2018, 5, 1800865.	1.9	7

#	Article	IF	CITATIONS
73	Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes. Nano Letters, 2017, 17, 2979-2984.	4.5	18
74	Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon. Nano Letters, 2017, 17, 4101-4108.	4.5	47
75	Tilting Catalyst-Free InAs Nanowires by 3D-Twinning and Unusual Growth Directions. Crystal Growth and Design, 2017, 17, 3596-3605.	1.4	4
76	Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires. Nanoscale, 2017, 9, 7839-7846.	2.8	15
77	Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets. Nanotechnology, 2017, 28, 054001.	1.3	24
78	Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters, 2017, 17, 747-754.	4.5	80
79	Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy, 2017, 41, 566-572.	8.2	34
80	Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS Photonics, 2017, 4, 2235-2241.	3.2	28
81	Imaging magnetic vortex configurations in ferromagnetic nanotubes. Physical Review B, 2017, 96, .	1.1	25
82	Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotechnology, 2017, 12, 150-155.	15.6	83
83	Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. Nanotechnology, 2016, 27, 305704.	1.3	18
84	Magnetization reversal in individual Py and CoFeB nanotubes locally probed via anisotropic magnetoresistance and anomalous Nernst effect. Applied Physics Letters, 2016, 108, .	1.5	16
85	Quantum Dots in Nanowires. Semiconductors and Semimetals, 2016, , 159-184.	0.4	3
86	Synthesis, Morphological, and Electro-optical Characterizations of Metal/Semiconductor Nanowire Heterostructures. Nano Letters, 2016, 16, 3507-3513.	4.5	14
87	Impact of the Ga Droplet Wetting, Morphology, and Pinholes on the Orientation of GaAs Nanowires. Crystal Growth and Design, 2016, 16, 5781-5786.	1.4	38
88	Understanding and exploiting optical properties in semiconductor nanowires for solar energy conversion. , 2016, , .		0
89	Dynamic cantilever magnetometry of individual CoFeB nanotubes. Physical Review B, 2016, 93, .	1.1	32
90	Molecular beam epitaxy of InAs nanowires in SiO2nanotube templates: challenges and prospects for integration of III–Vs on Si. Nanotechnology, 2016, 27, 455601.	1.3	7

#	Article	IF	CITATIONS
91	Strain-Induced Band Gap Engineering in Selectively Grown GaN–(Al,Ga)N Core–Shell Nanowire Heterostructures. Nano Letters, 2016, 16, 7098-7106.	4.5	41
92	Nanowire-Aperture Probe: Local Enhanced Fluorescence Detection for the Investigation of Live Cells at the Nanoscale. ACS Photonics, 2016, 3, 1208-1216.	3.2	26
93	How crystals get an edge. Nature, 2016, 531, 308-309.	13.7	7
94	Tuning the response of non-allowed Raman modes in GaAs nanowires. Journal Physics D: Applied Physics, 2016, 49, 095103.	1.3	7
95	Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. ACS Nano, 2016, 10, 4219-4227.	7.3	62
96	From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires. Nano Letters, 2016, 16, 637-643.	4.5	56
97	Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B, 2015, 92, .	1.1	21
98	Polarization response of nanowires à la carte. Scientific Reports, 2015, 5, 7651.	1.6	17
99	Polymer Brush Guided Formation of Conformal, Plasmonic Nanoparticleâ€Based Electrodes for Microwire Solar Cells. Advanced Functional Materials, 2015, 25, 3958-3965.	7.8	10
100	Wetting of Ga on SiO _{<i>x</i>} and Its Impact on GaAs Nanowire Growth. Crystal Growth and Design, 2015, 15, 3105-3109.	1.4	65
101	Modulation Doping of GaAs/AlGaAs Core–Shell Nanowires With Effective Defect Passivation and High Electron Mobility. Nano Letters, 2015, 15, 1336-1342.	4.5	78
102	Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology, 2015, 26, 105603.	1.3	57
103	Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell. ACS Photonics, 2015, 2, 1284-1288.	3.2	26
104	Hybrid Semiconductor Nanowire–Metallic Yagi-Uda Antennas. Nano Letters, 2015, 15, 4889-4895.	4.5	39
105	High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga. Nano Letters, 2015, 15, 2869-2874.	4.5	34
106	Bottom-up engineering of InAs at the nanoscale: From V-shaped nanomembranes to nanowires. Journal of Crystal Growth, 2015, 420, 47-56.	0.7	5
107	Cracking the Si Shell Growth in Hexagonal GaP-Si Core–Shell Nanowires. Nano Letters, 2015, 15, 2974-2979.	4.5	23
108	Large-Area Epitaxial Monolayer MoS ₂ . ACS Nano, 2015, 9, 4611-4620.	7.3	712

#	Article	IF	CITATIONS
109	Quantum dots in the GaAs/Al <i>x</i> Ga1â^< <i>x</i> As core-shell nanowires: Statistical occurrence as a function of the shell thickness. Applied Physics Letters, 2015, 107, .	1.5	13
110	Towards defect-free 1-D GaAs/AlGaAs heterostructures based on GaAs nanomembranes. Nanoscale, 2015, 7, 19453-19460.	2.8	46
111	Modulation of Fluorescence Signals from Biomolecules along Nanowires Due to Interaction of Light with Oriented Nanostructures. Nano Letters, 2015, 15, 176-181.	4.5	22
112	Field-effect passivation on silicon nanowire solar cells. Nano Research, 2015, 8, 673-681.	5.8	69
113	Characterization and analysis of InAs/p–Si heterojunction nanowire-based solar cell. Journal Physics D: Applied Physics, 2014, 47, 394017.	1.3	25
114	Tuning the <i>g</i> -factor of neutral and charged excitons confined to self-assembled (Al,Ga)As shell quantum dots. Applied Physics Letters, 2014, 105, .	1.5	8
115	Exciton footprint of self-assembled AlGaAs quantum dots in core-shell nanowires. Physical Review B, 2014, 90, .	1.1	21
116	Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy. Journal of Applied Physics, 2014, 116, 184303.	1.1	4
117	Light Generation and Harvesting in a van der Waals Heterostructure. ACS Nano, 2014, 8, 3042-3048.	7.3	389
118	Nanoskiving Core–Shell Nanowires: A New Fabrication Method for Nano-optics. Nano Letters, 2014, 14, 524-531.	4.5	25
119	Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chemistry, 2014, 6, 468-476.	6.6	97
120	Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Letters, 2014, 14, 2271-2278.	4.5	73
121	Ill–V nanowire arrays: growth and light interaction. Nanotechnology, 2014, 25, 014015.	1.3	87
122	Semiconductor Nanowires for Next Generation Solar Cells. , 2014, , .		1
123	Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature. APL Materials, 2014, 2, .	2.2	29
124	Plastic and Elastic Strain Fields in GaAs/Si Core–Shell Nanowires. Nano Letters, 2014, 14, 1859-1864.	4.5	32
125	Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature. Journal of Crystal Growth, 2014, 404, 246-255.	0.7	44
126	Gold-Free Ternary Ill–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer. Nano Letters, 2014, 14, 326-332.	4.5	88

#	Article	IF	CITATIONS
127	Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire. Nano Letters, 2014, 14, 4454-4460.	4.5	94
128	Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires. Applied Physics Letters, 2014, 105, .	1.5	45
129	10.1063/1.4904952.1., 2014, , .		0
130	Hybrid axial and radial Si–GaAs heterostructures in nanowires. Nanoscale, 2013, 5, 9633.	2.8	15
131	Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry. Physical Review Letters, 2013, 111, 067202.	2.9	59
132	Bandgap engineering in a nanowire: self-assembled 0, 1 and 2D quantum structures. Materials Today, 2013, 16, 213-219.	8.3	30
133	Advances in the theory of Ill–V nanowire growth dynamics. Journal Physics D: Applied Physics, 2013, 46, 313001.	1.3	110
134	Three-Dimensional Magneto-Photoluminescence as a Probe of the Electronic Properties of Crystal-Phase Quantum Disks in GaAs Nanowires. Nano Letters, 2013, 13, 5303-5310.	4.5	28
135	A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire. Journal of Materials Chemistry C, 2013, 1, 4300.	2.7	66
136	Enhancement of Second Harmonic Signal in Nanofabricated Cones. Nano Letters, 2013, 13, 6048-6054.	4.5	35
137	Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Materials, 2013, 12, 439-444.	13.3	306
138	Single-nanowire solar cells beyond the Shockley–Queisser limit. Nature Photonics, 2013, 7, 306-310.	15.6	708
139	Raman spectroscopy of self-catalyzed GaAs _{1â^'<i>x</i>} Sb _{<i>x</i>} nanowires grown on silicon. Nanotechnology, 2013, 24, 405707.	1.3	37
140	Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Applied Physics Letters, 2013, 102, .	1.5	58
141	Electrical transport in Câ€doped GaAs nanowires: surface effects. Physica Status Solidi - Rapid Research Letters, 2013, 7, 890-893.	1.2	15
142	Hartree simulations of coupled quantum Hall edge states in corner-overgrown heterostructures. Physical Review B, 2013, 87, .	1.1	3
143	Electrical contacts to single nanowires: a scalable method allowing multiple devices on a chip. Application to a single nanowire radial p-i-n junction. International Journal of Nanotechnology, 2013, 10, 419.	0.1	9
144	Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis. Nano Letters, 2012, 12, 2579-2586.	4.5	161

#	Article	IF	CITATIONS
145	Cantilever Magnetometry of Individual Ni Nanotubes. Nano Letters, 2012, 12, 6139-6144.	4.5	78
146	Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale, 2012, 4, 1486.	2.8	73
147	An Electrically-Driven GaAs Nanowire Surface Plasmon Source. Nano Letters, 2012, 12, 4943-4947.	4.5	57
148	Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. Nanoscale, 2012, 4, 1789.	2.8	60
149	Vertical "Ill–V―V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si[001] Substrate and Their Enhanced Light Scattering. ACS Nano, 2012, 6, 10982-10991.	7.3	41
150	Valence band structure of polytypic zinc-blende/wurtzite GaAs nanowires probed by polarization-dependent photoluminescence. Physical Review B, 2012, 85, .	1.1	57
151	Pressure Tuning of the Optical Properties of GaAs Nanowires. ACS Nano, 2012, 6, 3284-3291.	7.3	43
152	Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance. Nanoscale, 2012, 4, 4989.	2.8	71
153	Effect of the <i>pn</i> junction engineering on Si microwireâ€array solar cells. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1588-1591.	0.8	24
154	Low-Temperature Preparation of Tailored Carbon Nanostructures in Water. Nano Letters, 2012, 12, 2573-2578.	4.5	34
155	Engineering light absorption in single-nanowire solar cells with metal nanoparticles. New Journal of Physics, 2011, 13, 123026.	1.2	24
156	Three-Dimensional Multiple-Order Twinning of Self-Catalyzed GaAs Nanowires on Si Substrates. Nano Letters, 2011, 11, 3827-3832.	4.5	123
157	Determination of the band gap and the split-off band in wurtzite GaAs using Raman and photoluminescence excitation spectroscopy. Physical Review B, 2011, 83, .	1.1	56
158	In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Nanotechnology, 2011, 22, 195601.	1.3	48
159	Phonon confinement and plasmon-phonon interaction in nanowire-based quantum wells. Physical Review B, 2011, 83, .	1.1	16
160	Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy. ACS Nano, 2011, 5, 7585-7592.	7.3	126
161	Fundamental limits in the external quantum efficiency of single nanowire solar cells. Applied Physics Letters, 2011, 99, 263102.	1.5	45
162	Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Physical Review B, 2011, 83, .	1.1	193

#	Article	IF	CITATIONS
163	Cold-Free GaAs Nanowire Synthesis and Optical Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 819-828.	1.9	55
164	Free standing modulation doped core–shell GaAs/AlGaAs heteroâ€nanowires. Physica Status Solidi - Rapid Research Letters, 2011, 5, 353-355.	1.2	29
165	Supercooling of nanoscale Ga drops with controlled impurity levels. Physical Review B, 2011, 84, .	1.1	13
166	Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2010, 100, 287-296.	1.1	49
167	Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology, 2010, 21, 435601.	1.3	67
168	Compensation mechanism in silicon-doped gallium arsenide nanowires. Applied Physics Letters, 2010, 97, .	1.5	43
169	InAs Quantum Dot Arrays Decorating the Facets of GaAs Nanowires. ACS Nano, 2010, 4, 5985-5993.	7.3	99
170	P-Doping Mechanisms in Catalyst-Free Gallium Arsenide Nanowires. Nano Letters, 2010, 10, 1734-1740.	4.5	110
171	Defect Formation in Ga-Catalyzed Silicon Nanowires. Crystal Growth and Design, 2010, 10, 1534-1543.	1.4	46
172	Impact of surfaces on the optical properties of GaAs nanowires. Applied Physics Letters, 2010, 97, .	1.5	213
173	Synthesis parameter space of bismuth catalyzed germanium nanowires. Applied Physics Letters, 2009, 94, .	1.5	25
174	Catalyst-free nanowires with axial In _{<i>x</i>} Ga _{1â^'<i>x</i>} As <i>/</i> GaAs heterostructures. Nanotechnology, 2009, 20, 075603.	1.3	70
175	Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Nanotechnology, 2009, 20, 155602.	1.3	68
176	Single crystalline and core–shell indium-catalyzed germanium nanowires—a systematic thermal CVD growth study. Nanotechnology, 2009, 20, 245608.	1.3	25
177	Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Physical Review B, 2009, 80, .	1.1	222
178	Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. Journal of Materials Chemistry, 2009, 19, 840.	6.7	88
179	Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Physical Review B, 2009, 80, .	1.1	434
180	Gallium arsenide p-i-n radial structures for photovoltaic applications. Applied Physics Letters, 2009, 94, .	1.5	270

#	Article	IF	CITATIONS
181	General theoretical considerations on nanowire solar cell designs. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 173-178.	0.8	52
182	Prismatic Quantum Heterostructures Synthesized on Molecularâ€Beam Epitaxy GaAs Nanowires. Small, 2008, 4, 899-903.	5.2	142
183	Growth mechanisms and optical properties of GaAs-based semiconductor microstructures by selective area epitaxy. Journal of Crystal Growth, 2008, 310, 1049-1056.	0.7	42
184	Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. Journal of Applied Physics, 2008, 104, .	1.1	86
185	Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Physical Review B, 2008, 77, .	1.1	386
186	Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Applied Physics Letters, 2008, 92, .	1.5	261
187	The use of molecular beam epitaxy for the synthesis of high purity Ill–V nanowires. Journal of Physics Condensed Matter, 2008, 20, 454225.	0.7	24
188	Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy. Nanotechnology, 2008, 19, 435704.	1.3	66
189	Controlled synthesis of InAs wires, dot and twin-dot array configurations by cleaved edge overgrowth. Nanotechnology, 2008, 19, 045303.	1.3	15
190	Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism. Nanotechnology, 2007, 18, 305606.	1.3	144
191	Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor-Liquid-Solid Method. Japanese Journal of Applied Physics, 2006, 45, L190-L193.	0.8	68
192	InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation. Applied Physics Letters, 2003, 83, 5413-5415.	1.5	66
193	Fabrication of Single Crystalline InSbâ€onâ€insulator by Rapid Melt Growth. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	3