
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822465/publications.pdf Version: 2024-02-01

ΔΜΕΕΡ ΔΗΔΜΜΔΟ

#	Article	IF	CITATIONS
1	Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface. Biomass Conversion and Biorefinery, 2023, 13, 4331-4342.	4.6	9
2	Thermal analysis of unsteady convective flows over a vertical cylinder with time-dependent temperature using the generalized Atangana–Baleanu derivative. Chinese Journal of Physics, 2022, 77, 1431-1449.	3.9	10
3	Hall effects on MHD chemically reacting flow of second grade fluid past a vertical porous plate. Heat Transfer, 2022, 51, 3696-3720.	3.0	4
4	Peristaltic Transport of Carreau Nanofluid in Presence of Triple Diffusion in an Asymmetric Channel by Multi-Step Differential Transformation Method. Mathematics, 2022, 10, 807.	2.2	2
5	Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects. Micromachines, 2022, 13, 588.	2.9	80
6	Finite Difference Computation of Au-Cu/Magneto-Bio-Hybrid Nanofluid Flow in an Inclined Uneven Stenosis Artery. Complexity, 2022, 2022, 1-18.	1.6	25
7	Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002210897.	1.6	3
8	Effect of Nanoparticles on Wire Surface Coating Using Viscoelastic Third-Grade Fluid as a Coating Polymer inside Permeable Covering Die with Variable Viscosity and Magnetic Field. Journal of Nanomaterials, 2022, 2022, 1-15.	2.7	4
9	Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel. Mathematics, 2022, 10, 1701.	2.2	2
10	Heat and mass transfer on unsteady MHD flow of Casson fluid over an infinite perpendicular absorbent plate with slip effects. Heat Transfer, 2022, 51, 6685-6704.	3.0	1
11	Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates. Micromachines, 2022, 13, 874.	2.9	34
12	Unsteady MHD third-grade fluid past an absorbent high-temperature shrinking sheet packed with silver nanoparticles and non-linear radiation. Journal of Taibah University for Science, 2022, 16, 585-593.	2.5	8
13	Heat transport mechanism in Cu/water and (Cu–Al2O3)/water under the influence of thermophysical characteristics and non-linear thermal radiation for Blasius/Sakiadis models: Numerical investigation. Journal of the Indian Chemical Society, 2022, 99, 100578.	2.8	12
14	Bio-Convection Effects on Prandtl Hybrid Nanofluid Flow with Chemical Reaction and Motile Microorganism over a Stretching Sheet. Nanomaterials, 2022, 12, 2174.	4.1	68
15	Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. AEJ - Alexandria Engineering Journal, 2021, 60, 845-858.	6.4	173
16	Hall current impacts on unsteady MHD free convective flow past an infinite vertical porous surface. Heat Transfer, 2021, 50, 4656-4668.	3.0	3
17	Heat and mass transfer in MHD boundary layer flow of a secondâ€grade fluid past an infinite vertical permeable surface. Heat Transfer, 2021, 50, 6022-6042.	3.0	3
18	Thermal radiation, chemical reaction, Hall and ion slip effects on MHD oscillatory rotating flow of micro-polar liquid. AEJ - Alexandria Engineering Journal, 2021, 60, 3467-3484.	6.4	51

#	Article	IF	CITATIONS
19	Heat Transfer and Entropy in a Vertical Porous Plate Subjected to Suction Velocity and MHD. Entropy, 2021, 23, 1069.	2.2	4
20	Radiation absorption on MHD convective flow of nanofluids through vertically travelling absorbent plate. Ain Shams Engineering Journal, 2021, 12, 3043-3056.	6.1	49
21	Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Studies in Thermal Engineering, 2021, 27, 101229.	5.7	190
22	Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel. Case Studies in Thermal Engineering, 2021, 28, 101571.	5.7	35
23	Two-Phase Non-Newtonian Pulsatile Blood Flow Simulations in a Rigid and Flexible Patient-Specific Left Coronary Artery (LCA) Exhibiting Multi-Stenosis. Applied Sciences (Switzerland), 2021, 11, 11361.	2.5	10
24	Significance low oscillating magnetic field and Hall current in the nano-ferrofluid flow past a rotating stretchable disk. Scientific Reports, 2021, 11, 23204.	3.3	9
25	Heat Transfer in Square Porous Cavity Due to Radiation and Heat Generating Strip - Part I. IOP Conference Series: Materials Science and Engineering, 2020, 764, 012028.	0.6	Ο
26	Heat Transfer in Square Porous Cavity Due to Radiation and Heat Generating Strip - Part II. IOP Conference Series: Materials Science and Engineering, 2020, 764, 012030.	0.6	1
27	Conjugate Double Diffusion: Effect of Buoyancy Ratio. Materials Today: Proceedings, 2020, 24, 1410-1415.	1.8	0
28	Effect of Inner and Outer Horizontal wall Heating on Porous Duct. Materials Today: Proceedings, 2020, 24, 1416-1423.	1.8	1
29	Heat transfer in a porous cavity due to left aligned internal heating strip. Materials Today: Proceedings, 2020, 27, 1848-1853.	1.8	Ο
30	Heat transfer in a porous cavity with an internal heating strip towards cold surface. Materials Today: Proceedings, 2020, 27, 1863-1868.	1.8	1
31	Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. AEJ - Alexandria Engineering Journal, 2020, 59, 565-577.	6.4	260
32	Finite element formulation of conjugate heat transfer in porous annulus. AIP Conference Proceedings, 2020, , .	0.4	7
33	Effect of centrally placed internal heating strip on heat transfer in a porous cavity. Materials Today: Proceedings, 2020, 27, 1894-1899.	1.8	0
34	Conjugate Heat and Mass Transfer Due to Solid Block in Porous Material. Springer Proceedings in Materials, 2020, , 727-737.	0.3	0
35	Double Diffusion Caused by Hot Strip in Porous Material. Springer Proceedings in Materials, 2020, , 739-749.	0.3	0
36	Conjugate heat transfer due to partial isothermal heating at center of annuls with two solids in porous annulus: Part I. AIP Conference Proceedings, 2019, , .	0.4	16

#	Article	IF	CITATIONS
37	Radiation effect on conjugate heat transfer in an annulus. AIP Conference Proceedings, 2019, , .	0.4	3
38	Conjugate heat transfer due to partial isothermal heating at center of annuls with two solids in porous annulus: Part II. AIP Conference Proceedings, 2019, , .	0.4	0
39	Finite element solution strategy for viscous dissipation in porous medium. AIP Conference Proceedings, 2019, , .	0.4	18
40	Partial heating at upper section of annulus subjected to conjugate heat transfer in porous annulus. AIP Conference Proceedings, 2019, , .	0.4	16
41	Heat and mass transfer with viscous dissipation in porous medium: FEM based methodology. AIP Conference Proceedings, 2019, , .	0.4	17
42	Discrete heating of opposing mixed convection heated at bottom of annulus. AIP Conference Proceedings, 2019, , .	0.4	9
43	Discrete heating at bottom of annulus in case of mixed convection: Aiding flow. AIP Conference Proceedings, 2019, , .	0.4	5
44	Effect of outer surface heating of porous annulus with thermal non equilibrium: Part I. AIP Conference Proceedings, 2019, , .	0.4	0
45	Effect of outer surface heating of porous annulus with thermal non equilibrium: Part II. AIP Conference Proceedings, 2019, , .	0.4	0
46	Conjugate heat transfer due to power law temperature in an annulus. AIP Conference Proceedings, 2019, , .	0.4	0
47	The influence of curvature wall onÂtheÂbloodÂflow in stenosed artery: AÂcomputationalÂstudy. Bio-Medical Materials and Engineering, 2018, 29, 319-332.	0.6	6
48	Heat and mass transfer in vertical porous medium due to partial heating. AIP Conference Proceedings, 2018, , .	0.4	0
49	Heat transfer in a conical porous medium due to inner and top surface heating: Effect of radius ratio. AIP Conference Proceedings, 2018, , .	0.4	0
50	Application of artificial neural network for heat transfer in porous cone. AIP Conference Proceedings, 2018, , .	0.4	32
51	Heat transfer prediction in a square porous medium using artificial neural network. AIP Conference Proceedings, 2018, , .	0.4	36
52	Patient specific 3-d modeling of blood flow in a multi-stenosed left coronary artery. Bio-Medical Materials and Engineering, 2017, 28, 257-266.	0.6	11
53	Influence of radiation on MHD peristaltic blood flow through a tapered channel in presence of slip and joule heating. AIP Conference Proceedings, 2017, , .	0.4	1
54	Double diffusion in arbitrary porous cavity: Part I. AIP Conference Proceedings, 2017, , .	0.4	36

#	Article	IF	CITATIONS
55	Double diffusion in arbitrary porous cavity: Part II. AIP Conference Proceedings, 2017, , .	0.4	5
56	Natural convection due to heating of small block in porous medium. IOP Conference Series: Materials Science and Engineering, 2017, 225, 012010.	0.6	0
57	Double diffusion in arbitrary porous cavity: Part III. AIP Conference Proceedings, 2017, , .	0.4	0
58	The Influence of Geometrical Shapes of Stenosis on the Blood Flow in Stenosed Artery. Sains Malaysiana, 2017, 46, 1923-1933.	0.5	14
59	CONJUGATE DOUBLE DIFFUSION IN A SQUARE CAVITY DIVIDED INTO TWO SECTIONS. Frontiers in Heat and Mass Transfer, 0, 9, .	0.2	0
60	Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant. Waves in Random and Complex Media, 0, , 1-18.	2.7	8
61	Approximation of unsteady squeezing flow through porous space with slip effect: DJM approach. Waves in Random and Complex Media, 0, , 1-15.	2.7	4
62	Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk. Waves in Random and Complex Media, 0, , 1-16.	2.7	20
63	Thermal and solutal transport analysis of Blasius–Rayleigh–Stokes flow of hybrid nanofluid with convective boundary conditions. Waves in Random and Complex Media, 0, , 1-19.	2.7	12
64	Heat transport and the aspects of retardation time phenomenon in the flow of highly viscoelastic nanofluid with a Newtonian heating agent. Waves in Random and Complex Media, 0, , 1-19.	2.7	0